Skip to main content
Log in

Tart cherry (Prunus cerasus L.) dietary supplement modulates visceral adipose tissue CB1 mRNA levels along with other adipogenesis-related genes in rat models of diet-induced obesity

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

There is increasing evidence for the involvement of dietary bioactive compounds in the cross-talk modulation of endocannabinoid system and some of the key regulators of transcriptional control for adipogenesis.

Methods

We aimed to characterize the expression of cannabinoid CB1/CB2 receptors and fatty acid amide hydrolase (FAAH) along with selected adipogenesis-related genes (PPARγ, SREBP-1c and PREF-1), adipocyte-secreted factors (leptin and adiponectin), mitochondrial bioenergetic modulators (PGC-1A and UCP-2), and transient receptor potential vanilloid subtype 1 (TRPV1) and 2 (TRPV2) channels in visceral adipose tissue of rats fed with a high-fat diet (HFD) containing either tart cherry seeds alone or tart cherry seeds and juice for 17 weeks. The visceral adipose tissue was weighed and checked the expression of different markers by qRT-PCR, Western blot and immunohistochemistry.

Results

Tart cherry supplements were able to downregulate the HFD-induced mRNA expression of CB1 receptor, SREBP-1c, PPARγ, leptin, TRPV1 and TRPV2 resulting in potential anti-adipogenic effects.

Conclusion

The present study points out that the intake of bioactive constituents of tart cherry may attenuate the effect of adipogenesis by acting directly on the adipose tissue and modulating the interplay between CB1, PPARγ and TRPV channel gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee YH, Tharp WG, Dixon AE, Spaulding L, Trost S, Nair S, Permana PA, Pratley RE (2009) Dysregulation of cannabinoid CB1 receptor expression in subcutaneous adipocytes of obese individuals. Anim Cells Syst 13(4):371–379. https://doi.org/10.1080/19768354.2009.9647232

    Article  CAS  Google Scholar 

  2. Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Batkai S, Harvey-White J, Mackie K, Offertaler L, Wang L, Kunos G (2005) Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Investig 115(5):1298–1305. https://doi.org/10.1172/JCI23057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matias I, Gonthier MP, Orlando P, Martiadis V, De Petrocellis L, Cervino C, Petrosino S, Hoareau L, Festy F, Pasquali R, Roche R, Maj M, Pagotto U, Monteleone P, Di Marzo V (2006) Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J Clin Endocrinol Metab 91(8):3171–3180. https://doi.org/10.1210/jc.2005-2679

    Article  CAS  PubMed  Google Scholar 

  4. Wagner IV, Perwitz N, Drenckhan M, Lehnert H, Klein J (2011) Cannabinoid type 1 receptor mediates depot-specific effects on differentiation, inflammation and oxidative metabolism in inguinal and epididymal white adipocytes. Nutr Diabetes 1:e16. https://doi.org/10.1038/nutd.2011.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang YT, Chiang HH, Huang YS, Hsu CL, Yang PJ, Juan HF, Yang WS (2016) A link between adipogenesis and innate immunity: RNase-L promotes 3T3-L1 adipogenesis by destabilizing Pref-1 mRNA. Cell Death Dis 7(11):e2458. https://doi.org/10.1038/cddis.2016.323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Toda C, Diano S (2014) Mitochondrial UCP2 in the central regulation of metabolism. Best Pract Res Clin Endocrinol Metab 28(5):757–764. https://doi.org/10.1016/j.beem.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  7. Muller C, Morales P, Reggio PH (2018) Cannabinoid ligands targeting TRP Channels. Front Mol Neurosci 11:487. https://doi.org/10.3389/fnmol.2018.00487

    Article  CAS  PubMed  Google Scholar 

  8. Gao P, Yan Z, Zhu Z (2019) The role of adipose TRP channels in the pathogenesis of obesity. J Cell Physiol 234(8):12483–12497. https://doi.org/10.1002/jcp.28106

    Article  CAS  PubMed  Google Scholar 

  9. Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J, Group RI-NAS (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295(7):761–775. https://doi.org/10.1001/jama.295.7.761

    Article  Google Scholar 

  10. Vuckovic S, Srebro D, Vujovic KS, Vucetic C, Prostran M (2018) Cannabinoids and pain: new insights from old molecules. Front Pharmacol 9:1259. https://doi.org/10.3389/fphar.2018.01259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shrinivasan M, Skariyachan S, Aparna V, Kolte VR (2012) Homology modelling of CB1 receptor and selection of potential inhibitor against obesity. Bioinformation 8(11):523–528. https://doi.org/10.6026/97320630008523

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, Bapat P, Kwun I, Shen CL (2014) Novel insights of dietary polyphenols and obesity. J Nutr Biochem 25(1):1–18. https://doi.org/10.1016/j.jnutbio.2013.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holzer P, Izzo AA (2014) The pharmacology of TRP channels. Br J Pharmacol 171(10):2469–2473. https://doi.org/10.1111/bph.12723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jayarathne S, Stull AJ, Miranda A, Scoggin S, Claycombe-Larson K, Kim JH, Moustaid-Moussa N (2018) Tart Cherry Reduces Inflammation in Adipose Tissue of Zucker Fatty Rats and Cultured 3T3-L1 Adipocytes. Nutrients. https://doi.org/10.3390/nu10111576

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim DO, Heo HJ, Kim YJ, Yang HS, Lee CY (2005) Sweet and sour cherry phenolics and their protective effects on neuronal cells. J Agric Food Chem 53(26):9921–9927. https://doi.org/10.1021/jf0518599

    Article  CAS  PubMed  Google Scholar 

  16. Toydemir G, Capanoglu E, Kamiloglu S, Boyacioglu D, de Vos RCH, Hall RD, Beekwilder J (2013) Changes in sour cherry (Prunus cerasus L.) antioxidants during nectar processing and in vitro gastrointestinal digestion. J Funct Foods 5(3):1402–1413. https://doi.org/10.1016/j.jff.2013.05.008

    Article  CAS  Google Scholar 

  17. Lila MA (2004) Anthocyanins and human health: an in vitro investigative approach. J Biomed Biotechnol 2004(5):306–313. https://doi.org/10.1155/S111072430440401X

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wallace TC, Giusti MM (2014) Anthocyanins in Health and Diseases, 1st edn. CRC Press, Boca Raton, pp 165–199

    Google Scholar 

  19. Thibado SP, Thornthwaite JT, Ballard TK, Goodman BT (2018) Anticancer effects of Bilberry anthocyanins compared with NutraNanoSphere encapsulated Bilberry anthocyanins. Mol Clin Oncol 8(2):330–335. https://doi.org/10.3892/mco.2017.1520

    Article  CAS  PubMed  Google Scholar 

  20. Seymour EM, Singer AA, Kirakosyan A, Urcuyo-Llanes DE, Kaufman PB, Bolling SF (2008) Altered hyperlipidemia, hepatic steatosis, and hepatic peroxisome proliferator-activated receptors in rats with intake of tart cherry. J Med Food 11(2):252–259. https://doi.org/10.1089/jmf.2007.658

    Article  CAS  PubMed  Google Scholar 

  21. Seymour EM, Lewis SK, Urcuyo-Llanes DE, Tanone II, Kirakosyan A, Kaufman PB, Bolling SF (2009) Regular tart cherry intake alters abdominal adiposity, adipose gene transcription, and inflammation in obesity-prone rats fed a high fat diet. J Med Food 12(5):935–942. https://doi.org/10.1089/jmf.2008.0270

    Article  CAS  PubMed  Google Scholar 

  22. Micioni Di Bonaventura MV, Martinelli I, Moruzzi M, Micioni Di Bonaventura E, Giusepponi ME, Polidori C, Lupidi G, Tayebati SK, Amenta F, Cifani C, Tomassoni D (2020) Brain alterations in high fat diet induced obesity: effects of tart cherry seeds and juice. Nutrients. https://doi.org/10.3390/nu12030623

    Article  PubMed  PubMed Central  Google Scholar 

  23. Martinelli I, Micioni Di Bonaventura MV, Moruzzi M, Amantini C, Maggi F, Gabrielli MG, Fruganti A, Marchegiani A, Dini F, Marini C, Polidori C, Lupidi G, Amenta F, Tayebati SK, Cifani C, Tomassoni D (2020) Effects of Prunus cerasus L. seeds and juice on liver steatosis in an animal model of diet-induced obesity. Nutrients. https://doi.org/10.3390/nu12051308

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee J, Durst RW, Wrolstad RE (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int 88(5):1269–1278

    Article  CAS  Google Scholar 

  25. Kyrakosyan A, Seymour EM, Llanes DEU, Kaufman PB, Bolling SF (2009) Chemical profile and antioxidant capacities of tart cherry products. Food Chem 115:20–25

    Article  Google Scholar 

  26. Wojdylo A, Nowicka P, Laskowski P, Oszmianski J (2014) Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. J Agric Food Chem 62(51):12332–12345. https://doi.org/10.1021/jf504023z

    Article  CAS  PubMed  Google Scholar 

  27. Yilmaz FM, Gorguc A, Karaaslan M, Vardin H, Ersus Bilek S, Uygun O, Bircan C (2019) Sour cherry by-products: compositions, functional properties and recovery potentials—a review. Crit Rev Food Sci Nutr 59(22):3549–3563. https://doi.org/10.1080/10408398.2018.1496901

    Article  CAS  PubMed  Google Scholar 

  28. Siddiq M, Iezzoni A, Khan A, Breen P, Sebolt AM, Dolan KD, Ravi R (2011) Characterization of new tart cherry (Prunus cerasus L.): selections based on fruit quality, total anthocyanins, and antioxidant capacity. Int J Food Properties 14(2):471–480

    Article  CAS  Google Scholar 

  29. Repajic M, Kovacevic DB, Putnik P, Dragovic-Uzelac V, Kust J, Cosic Z, Levaj B (2015) Influence of cultivar and industrial processing on polyphenols in concentrated sour cherry (Prunus cerasus L.) Juice. Food Technol Biotechnol 53(2):215–222. https://doi.org/10.17113/ftb.53.02.15.4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Keane KM, Bell PG, Lodge JK, Constantinou CL, Jenkinson SE, Bass R, Howatson G (2016) Phytochemical uptake following human consumption of Montmorency tart cherry (L Prunus cerasus) and influence of phenolic acids on vascular smooth muscle cells in vitro. Eur J Nutr 55(4):1695–1705. https://doi.org/10.1007/s00394-015-0988-9

    Article  CAS  PubMed  Google Scholar 

  31. Bak I, Lekli I, Juhasz B, Varga E, Varga B, Gesztelyi R, Szendrei L, Tosaki A (2010) Isolation and analysis of bioactive constituents of sour cherry (Prunus cerasus) seed kernel: an emerging functional food. J Med Food 13(4):905–910. https://doi.org/10.1089/jmf.2009.0188

    Article  CAS  PubMed  Google Scholar 

  32. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302. https://doi.org/10.1021/jf0502698

    Article  CAS  PubMed  Google Scholar 

  33. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3

    Article  CAS  PubMed  Google Scholar 

  34. Mandard S, Zandbergen F, Tan NS, Escher P, Patsouris D, Koenig W, Kleemann R, Bakker A, Veenman F, Wahli W, Muller M, Kersten S (2004) The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J Biol Chem 279(33):34411–34420. https://doi.org/10.1074/jbc.M403058200

    Article  CAS  PubMed  Google Scholar 

  35. Barbu A, Hedlund GP, Lind J, Carlsson C (2009) Pref-1 and adipokine expression in adipose tissues of GK and Zucker rats. Mol Cell Endocrinol 299(2):163–171. https://doi.org/10.1016/j.mce.2008.11.019

    Article  CAS  PubMed  Google Scholar 

  36. Volat FE, Pointud JC, Pastel E, Morio B, Sion B, Hamard G, Guichardant M, Colas R, Lefrancois-Martinez AM, Martinez A (2012) Depressed levels of prostaglandin F2alpha in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity. Diabetes 61(11):2796–2806. https://doi.org/10.2337/db11-1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grimaldi P, Pucci M, Di Siena S, Di Giacomo D, Pirazzi V, Geremia R, Maccarrone M (2012) The faah gene is the first direct target of estrogen in the testis: role of histone demethylase LSD1. Cell Mol Life Sci CMLS 69(24):4177–4190. https://doi.org/10.1007/s00018-012-1074-6

    Article  CAS  PubMed  Google Scholar 

  38. Zhang M, Martin BR, Adler MW, Razdan RK, Ganea D, Tuma RF (2008) Modulation of the balance between cannabinoid CB(1) and CB(2) receptor activation during cerebral ischemic/reperfusion injury. Neuroscience 152(3):753–760. https://doi.org/10.1016/j.neuroscience.2008.01.022

    Article  CAS  PubMed  Google Scholar 

  39. Song L, Qu D, Zhang Q, Jiang J, Zhou H, Jiang R, Li Y, Zhang Y, Yan H (2017) Phytosterol esters attenuate hepatic steatosis in rats with non-alcoholic fatty liver disease rats fed a high-fat diet. Sci Rep 7:41604. https://doi.org/10.1038/srep41604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao Q, Jia Y, Yang G, Zhang X, Boddu PC, Petersen B, Narsingam S, Zhu YJ, Thimmapaya B, Kanwar YS, Reddy JK (2015) PPARalpha-Deficient ob/ob Obese Mice Become More Obese and Manifest Severe Hepatic Steatosis Due to Decreased Fatty Acid Oxidation. Am J Pathol 185(5):1396–1408. https://doi.org/10.1016/j.ajpath.2015.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giudetti AM, Micioni Di Bonaventura MV, Ferramosca A, Longo S, Micioni Di Bonaventura E, Friuli M, Romano A, Gaetani S, Cifani C (2020) Brief daily access to cafeteria-style diet impairs hepatic metabolism even in the absence of excessive body weight gain in rats. FASEB J 34(7):9358–9371. https://doi.org/10.1096/fj.201902757R

    Article  CAS  PubMed  Google Scholar 

  42. Cifani C, Avagliano C, Micioni Di Bonaventura E, Giusepponi ME, De Caro C, Cristiano C, La Rana G, Botticelli L, Romano A, Calignano A, Gaetani S, Micioni Di Bonaventura MV, Russo R (2020) Modulation of pain sensitivity by chronic consumption of highly palatable food followed by abstinence: emerging role of fatty acid amide hydrolase. Front Pharmacol 11:266. https://doi.org/10.3389/fphar.2020.00266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pucci M, Micioni Di Bonaventura MV, Vezzoli V, Zaplatic E, Massimini M, Mai S, Sartorio A, Scacchi M, Persani L, Maccarrone M, Cifani C, D’Addario C (2019) Preclinical and clinical evidence for a distinct regulation of Mu opioid and type 1 cannabinoid receptor genes expression in obesity. Front Genet 10:523. https://doi.org/10.3389/fgene.2019.00523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cifani C, Micioni Di Bonaventura MV, Pucci M, Giusepponi ME, Romano A, Di Francesco A, Maccarrone M, D’Addario C (2015) Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction? Front Neurosci 9:187. https://doi.org/10.3389/fnins.2015.00187

    Article  PubMed  PubMed Central  Google Scholar 

  45. Farrell NJ, Norris GH, Ryan J, Porter CM, Jiang C, Blesso CN (2015) Black elderberry extract attenuates inflammation and metabolic dysfunction in diet-induced obese mice. Br J Nutr 114(8):1123–1131. https://doi.org/10.1017/S0007114515002962

    Article  CAS  PubMed  Google Scholar 

  46. DeFuria J, Bennett G, Strissel KJ, Perfield JW 2nd, Milbury PE, Greenberg AS, Obin MS (2009) Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J Nutr 139(8):1510–1516. https://doi.org/10.3945/jn.109.105155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nemes A, Homoki JR, Kiss R, Hegedus C, Kovacs D, Peitl B, Gal F, Stundl L, Szilvassy Z, Remenyik J (2019) Effect of anthocyanin-rich tart cherry extract on inflammatory mediators and adipokines involved in type 2 diabetes in a high fat diet induced obesity mouse model. Nutrients. https://doi.org/10.3390/nu11091966

    Article  PubMed  PubMed Central  Google Scholar 

  48. Prior RL, S EW, T RR, Khanal RC, Wu X, Howard LR, (2010) Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet. J Agric Food Chem 58(7):3970–3976. https://doi.org/10.1021/jf902852d

    Article  CAS  PubMed  Google Scholar 

  49. Pagano C, Pilon C, Calcagno A, Urbanet R, Rossato M, Milan G, Bianchi K, Rizzuto R, Bernante P, Federspil G, Vettor R (2007) The endogenous cannabinoid system stimulates glucose uptake in human fat cells via phosphatidylinositol 3-kinase and calcium-dependent mechanisms. J Clin Endocrinol Metab 92(12):4810–4819. https://doi.org/10.1210/jc.2007-0768

    Article  CAS  PubMed  Google Scholar 

  50. Tang YT, Ho G, Li YX, Hall MA, Hills RL, Black SC, Liang Y, Demarest KT (2012) Beneficial metabolic effects of CB1R anti-sense oligonucleotide treatment in diet-induced obese AKR/J mice. PLoS ONE. https://doi.org/10.1371/journal.pone.0042134

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ahmed B, Liu S, Si H (2017) Antiadipogenic effects and mechanisms of combinations of genistein, epigallocatechin-3-gallate, and/or resveratrol in preadipocytes. J Med Food 20(2):162–170. https://doi.org/10.1089/jmf.2016.0115

    Article  CAS  PubMed  Google Scholar 

  52. Brito LF, Gontijo DC, Toledo RCL, Barcelos RM, de Oliveira AB, Brandão GC, de Sousa LP, Ribeiro SMR, Leite JPV, Fietto LG, de Queiroz JH (2019) Mangifera indica leaves extract and mangiferin modulate CB1 and PPARγ receptors and others markers associated with obesity. J Funct Foods 56:74–83

    Article  CAS  Google Scholar 

  53. Bensaid M, Gary-Bobo M, Esclangon A, Maffrand JP, Le Fur G, Oury-Donat F, Soubrie P (2003) The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol Pharmacol 63(4):908–914. https://doi.org/10.1124/mol.63.4.908

    Article  CAS  PubMed  Google Scholar 

  54. Borner C, Hollt V, Sebald W, Kraus J (2007) Transcriptional regulation of the cannabinoid receptor type 1 gene in T cells by cannabinoids. J Leukocyte Biol 81(1):336–343. https://doi.org/10.1189/jlb.0306224

    Article  CAS  PubMed  Google Scholar 

  55. Borner C, Bedini A, Hollt V, Kraus J (2008) Analysis of promoter regions regulating basal and interleukin-4-inducible expression of the human CB1 receptor gene in T lymphocytes. Mol Pharmacol 73(3):1013–1019. https://doi.org/10.1124/mol.107.042945

    Article  CAS  PubMed  Google Scholar 

  56. Borner C, Martella E, Hollt V, Kraus J (2012) Regulation of opioid and cannabinoid receptor genes in human neuroblastoma and T cells by the epigenetic modifiers trichostatin A and 5-Aza-2 ’-deoxycytidine. Neuroimmunomodulat 19(3):180–186. https://doi.org/10.1159/000331474

    Article  CAS  Google Scholar 

  57. Reilly JM, Thompson MP (2000) Dietary fatty acids Up-regulate the expression of UCP2 in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 277(3):541–545. https://doi.org/10.1006/bbrc.2000.3705

    Article  CAS  PubMed  Google Scholar 

  58. Rieusset J, Auwerx J, Vidal H (1999) Regulation of gene expression by activation of the peroxisome proliferator-activated receptor gamma with rosiglitazone (BRL 49653) in human adipocytes. Biochem Biophys Res Commun 265(1):265–271. https://doi.org/10.1006/bbrc.1999.1657

    Article  CAS  PubMed  Google Scholar 

  59. Bjorndal B, Burri L, Staalesen V, Skorve J, Berge RK (2011) Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes 2011:490650. https://doi.org/10.1155/2011/490650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cote M, Matias I, Lemieux I, Petrosino S, Almeras N, Despres JP, Di Marzo V (2007) Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men. Int J Obes 31(4):692–699. https://doi.org/10.1038/sj.ijo.0803539

    Article  CAS  Google Scholar 

  61. Thors L, Belghiti M, Fowler CJ (2008) Inhibition of fatty acid amide hydrolase by kaempferol and related naturally occurring flavonoids. Br J Pharmacol 155(2):244–252. https://doi.org/10.1038/bjp.2008.237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dang ZC, Audinot V, Papapoulos SE, Boutin JA, Lowik CW (2003) Peroxisome proliferator-activated receptor gamma (PPARgamma ) as a molecular target for the soy phytoestrogen genistein. J Biol Chem 278(2):962–967. https://doi.org/10.1074/jbc.M209483200

    Article  CAS  PubMed  Google Scholar 

  63. Khalilpourfarshbafi M, Gholami K, Murugan DD, Abdul Sattar MZ, Abdullah NA (2019) Differential effects of dietary flavonoids on adipogenesis. Eur J Nutr 58(1):5–25. https://doi.org/10.1007/s00394-018-1663-8

    Article  CAS  PubMed  Google Scholar 

  64. Yim MJ, Hosokawa M, Mizushina Y, Yoshida H, Saito Y, Miyashita K (2011) Suppressive effects of Amarouciaxanthin A on 3T3-L1 adipocyte differentiation through down-regulation of PPARgamma and C/EBPalpha mRNA expression. J Agric Food Chem 59(5):1646–1652. https://doi.org/10.1021/jf103290f

    Article  CAS  PubMed  Google Scholar 

  65. Richard AJ, Amini-Vaughan Z, Ribnicky DM, Stephens JM (2013) Naringenin inhibits adipogenesis and reduces insulin sensitivity and adiponectin expression in adipocytes. Evid Based Complem Altern Med 2013:549750. https://doi.org/10.1155/2013/549750

    Article  Google Scholar 

  66. Seo YS, Kang OH, Kim SB, Mun SH, Kang DH, Yang DW, Choi JG, Lee YM, Kang DK, Lee HS, Kwon DY (2015) Quercetin prevents adipogenesis by regulation of transcriptional factors and lipases in OP9 cells. Int J Mol Med 35(6):1779–1785. https://doi.org/10.3892/ijmm.2015.2185

    Article  CAS  PubMed  Google Scholar 

  67. Motter AL, Ahern GP (2008) TRPV1-null mice are protected from diet-induced obesity. FEBS Lett 582(15):2257–2262. https://doi.org/10.1016/j.febslet.2008.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sun W, Uchida K, Suzuki Y, Zhou Y, Kim M, Takayama Y, Takahashi N, Goto T, Wakabayashi S, Kawada T, Iwata Y, Tominaga M (2016) Lack of TRPV2 impairs thermogenesis in mouse brown adipose tissue. EMBO Rep 17(3):383–399. https://doi.org/10.15252/embr.201540819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun W, Li C, Zhang Y, Jiang C, Zhai M, Zhou Q, Xiao L, Deng Q (2017) Gene expression changes of thermo-sensitive transient receptor potential channels in obese mice. Cell Biol Int 41(8):908–913. https://doi.org/10.1002/cbin.10783

    Article  CAS  PubMed  Google Scholar 

  70. Hermann H, De Petrocellis L, Bisogno T, Schiano Moriello A, Lutz B, Di Marzo V (2003) Dual effect of cannabinoid CB1 receptor stimulation on a vanilloid VR1 receptor-mediated response. Cell Mol Life Sci 60(3):607–616. https://doi.org/10.1007/s000180300052

    Article  CAS  PubMed  Google Scholar 

  71. Straub I, Mohr F, Stab J, Konrad M, Philipp SE, Oberwinkler J, Schaefer M (2013) Citrus fruit and fabacea secondary metabolites potently and selectively block TRPM3. Br J Pharmacol 168(8):1835–1850. https://doi.org/10.1111/bph.12076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rossato MF, Trevisan G, Walker CI, Klafke JZ, de Oliveira AP, Villarinho JG, Zanon RB, Royes LF, Athayde ML, Gomez MV, Ferreira J (2011) Eriodictyol: a flavonoid antagonist of the TRPV1 receptor with antioxidant activity. Biochem Pharmacol 81(4):544–551. https://doi.org/10.1016/j.bcp.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  73. Wang H, Nair MG, Strasburg GM, Booren AM, Gray JI (1999) Antioxidant polyphenols from tart cherries (Prunus cerasus). J Agric Food Chem 47(3):840–844. https://doi.org/10.1021/jf980936f

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a grant of the University of Camerino, University Research Projects—Fondo di Ateneo per la Ricerca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Alessandro Palermo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All procedures were carried out in accordance with the Institutional Guidelines and complied with the Italian Ministry of Health (Prot. n. 1610/2013) and associated guidelines from European Communities Council Directive (EU Directive 2010/63/EU). The protocol was approved by the Ethics Committee of the University of Camerino (n. 7/2012, June 6, 2012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cocci, P., Moruzzi, M., Martinelli, I. et al. Tart cherry (Prunus cerasus L.) dietary supplement modulates visceral adipose tissue CB1 mRNA levels along with other adipogenesis-related genes in rat models of diet-induced obesity. Eur J Nutr 60, 2695–2707 (2021). https://doi.org/10.1007/s00394-020-02459-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02459-y

Keywords

Navigation