Skip to main content
Log in

Serum magnesium concentration and incident cognitive impairment: the reasons for geographic and racial differences in stroke study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To examine the prospective association between serum Mg level and the incidence of cognitive impairment.

Methods

A random sub-cohort (n = 2063) from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort was included in this study. Baseline serum Mg concentration was measured using inductively coupled plasma mass spectrometry. According to the current reference interval of serum magnesium (0.75–0.95 mmol/L), we classified participants below the interval as Level 1 and used it as the referent. The rest of the study population were equally divided into three groups, named Level 2 to 4. Incident cognitive impairment was identified using the Six-Item Screener. Multivariable-adjusted odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were estimated using logistic regression models.

Results

After adjustment for potential confounders, an inverse threshold association between serum Mg level and incident cognitive impairment was observed. Compared to those with hypomagnesemia (Level 1: < 0.75 mmol/L), the relative odds of incident cognitive impairment was reduced by 41% in the second level [OR (95% CI) = 0.59 (0.37, 0.94)]; higher serum Mg level did not provide further benefits [Level 3 and 4 versus Level 1: OR (95% CI) = 0.54 (0.34, 0.88) and 0.59 (0.36, 0.96), P for linear trend = 0.08].

Conclusions

Findings from this prospective study suggest that sufficient Mg status within the normal range may be beneficial to cognitive health in the US general population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Wimo A, Jonsson L, Bond J, Prince M, Winblad B, Alzheimer Disease I (2013) The worldwide economic impact of dementia 2010. Alzheimers Dement 9(1):1–11. https://doi.org/10.1016/j.jalz.2012.11.006e13

    Article  PubMed  Google Scholar 

  2. Karri V, Schuhmacher M, Kumar V (2016) Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: a general review of metal mixture mechanism in brain. Environ Toxicol Pharmacol 48:203–213. https://doi.org/10.1016/j.etap.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  3. Poenaru S, Manicom R, Rouhani S et al (1997) Stability of brain content of magnesium in experimental hypomagnesemia. Brain Res 769(2):329–332

    Article  CAS  Google Scholar 

  4. Kim SJ, Linden DJ (2007) Ubiquitous plasticity and memory storage. Neuron 56(4):582–592. https://doi.org/10.1016/j.neuron.2007.10.030

    Article  CAS  PubMed  Google Scholar 

  5. Lisman JE, McIntyre CC (2001) Synaptic plasticity: a molecular memory switch. Curr Biol 11(19):R788–791

    Article  CAS  Google Scholar 

  6. Roberts EL Jr (1999) Using hippocampal slices to study how aging alters ion regulation in brain tissue. Methods 18(2):150–159. https://doi.org/10.1006/meth.1999.0768

    Article  CAS  PubMed  Google Scholar 

  7. Slutsky I, Abumaria N, Wu LJ et al (2010) Enhancement of learning and memory by elevating brain magnesium. Neuron 65(2):165–177. https://doi.org/10.1016/j.neuron.2009.12.026

    Article  CAS  PubMed  Google Scholar 

  8. Huang Y, Huang X, Zhang L et al (2018) Magnesium boosts the memory restorative effect of environmental enrichment in Alzheimer’s disease mice. CNS Neurosci Ther 24(1):70–79. https://doi.org/10.1111/cns.12775

    Article  CAS  PubMed  Google Scholar 

  9. Bardgett ME, Schultheis PJ, Muzny A, Riddle MD, Wagge JR (2007) Magnesium deficiency reduces fear-induced conditional lick suppression in mice. Magn Res 20(1):58–65

    CAS  Google Scholar 

  10. Balmus IM, Strungaru SA, Ciobica A et al (2017) Preliminary data on the interaction between some biometals and oxidative stress status in mild cognitive impairment and Alzheimer’s disease patients. Oxid Med Cell Longev 2017:7156928. https://doi.org/10.1155/2017/7156928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barbagallo M, Belvedere M, Di Bella G, Dominguez LJ (2011) Altered ionized magnesium levels in mild-to-moderate Alzheimer’s disease. Magnes Res 24(3):S115–121. https://doi.org/10.1684/mrh.2011.0287

    Article  CAS  PubMed  Google Scholar 

  12. Veronese N, Zurlo A, Solmi M et al (2016) Magnesium status in Alzheimer’s disease: a systematic review. Am J Alzheimers Dis Other Demen 31(3):208–213. https://doi.org/10.1177/1533317515602674

    Article  PubMed  Google Scholar 

  13. Cilliler AE, Ozturk S, Ozbakir S (2007) Serum magnesium level and clinical deterioration in Alzheimer’s disease. Gerontology 53(6):419–422. https://doi.org/10.1159/000110873

    Article  PubMed  Google Scholar 

  14. Corsonello A, Pedone C, Pahor M et al (2001) Serum magnesium levels and cognitive impairment in hospitalized hypertensive patients. Magnes Res 14(4):273–282

    CAS  PubMed  Google Scholar 

  15. Kieboom BCT, Licher S, Wolters FJ et al (2017) Serum magnesium is associated with the risk of dementia. Neurology 89(16):1716–1722. https://doi.org/10.1212/wnl.0000000000004517

    Article  CAS  PubMed  Google Scholar 

  16. Howard VJ, Cushman M, Pulley L et al (2005) The reasons for geographic and racial differences in stroke study: objectives and design. Neuroepidemiology 25(3):135–143. https://doi.org/10.1159/000086678

    Article  PubMed  Google Scholar 

  17. Cai J, Zeng D (2004) Sample size/power calculation for case-cohort studies. Biometrics 60(4):1015–1024

    Article  Google Scholar 

  18. Cushman M, Jenny NS, Zakai NA et al (2014) N-terminal pro-B-type natriuretic peptide and stroke risk: the reasons for geographic and racial differences in stroke cohort. Stroke 45(6):1646–1650. https://doi.org/10.1161/STROKEAHA.114.004712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kabagambe EK, Judd SE, Howard VJ et al (2011) Inflammation biomarkers and risk of all-cause mortality in the reasons for geographic and racial differences in stroke cohort. Am J Epidemiol 174(3):284–292. https://doi.org/10.1093/aje/kwr085

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen C, Xun P, McClure LA et al (2018) Serum mercury concentration and the risk of ischemic stroke: the reasons for geographic and racial differences in stroke trace element study. Environ Int 117:125–131. https://doi.org/10.1016/j.envint.2018.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cushman M, McClure LA, Howard VJ, Jenny NS, Lakoski SG, Howard G (2009) Implications of increased C-reactive protein for cardiovascular risk stratification in black and white men and women in the US. Clin Chem 55(9):1627–1636. https://doi.org/10.1373/clinchem.2008.122093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Callahan CM, Unverzagt FW, Hui SL, Perkins AJ, Hendrie HC (2002) Six-item screener to identify cognitive impairment among potential subjects for clinical research. Med Care 40(9):771–781. https://doi.org/10.1097/01.mlr.0000024610.33213.c8

    Article  Google Scholar 

  23. Morris JC, Mohs RC, Rogers H, Fillenbaum G, Heyman A (1988) Consortium to establish a registry for Alzheimer’s disease (CERAD) clinical and neuropsychological assessment of Alzheimer’s disease. Psychopharmacol Bull 24(4):641–652

    CAS  PubMed  Google Scholar 

  24. Rosen WG (1980) Verbal fluency in aging and dementia. J Clin Exp Neuropsychol 2(2):135–146

    Article  Google Scholar 

  25. Benton AL, Sivan AB, de Hamsher K, Varney NR (1994) Contributions to neuropsychological assessment: a clinical manual. Oxford University Press, Oxford

    Google Scholar 

  26. Hachinski V, Iadecola C, Petersen RC et al (2006) National Institute of neurological disorders and stroke-canadian stroke network vascular cognitive impairment harmonization standards. Stroke 37(9):2220–2241. https://doi.org/10.1161/01.Str.0000237236.88823.47

    Article  PubMed  Google Scholar 

  27. Gillett SR, Thacker EL, Letter AJ et al (2015) Correlates of incident cognitive impairment in the reasons for geographic and racial differences in stroke (REGARDS) study. Clin Neuropsychol 29(4):466–486. https://doi.org/10.1080/13854046.2015.1042524

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pearson KE, Wadley VG, McClure LA, Shikany JM, Unverzagt FW, Judd SE (2016) Dietary patterns are associated with cognitive function in the reasons for geographic and racial differences in stroke (REGARDS) cohort. J Nutr Sci 5:e38. https://doi.org/10.1017/jns.2016.27

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kohout FJ, Berkman LF, Evans DA, Cornoni-Huntley J (1993) Two shorter forms of the CES-D (Center for Epidemiological Studies Depression) depression symptoms index. J Aging Health 5(2):179–193. https://doi.org/10.1177/089826439300500202

    Article  CAS  PubMed  Google Scholar 

  30. Lowenstein FW, Stanton MF (1986) Serum magnesium levels in the United States, 1971-1974. J Am Coll Nutr 5(4):399–414. https://doi.org/10.1080/07315724.1986.10720143

    Article  CAS  PubMed  Google Scholar 

  31. Costello RB, Elin RJ, Rosanoff A et al (2016) Perspective: the case for an evidence-based reference interval for serum magnesium: the time has come. Adv Nutr 7(6):977–993. https://doi.org/10.3945/an.116.012765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilmott LA, Thompson LT (2013) Sex- and dose-dependent effects of post-trial calcium channel blockade by magnesium chloride on memory for inhibitory avoidance conditioning. Behav Brain Res 257:49–53. https://doi.org/10.1016/j.bbr.2013.09.047

    Article  CAS  PubMed  Google Scholar 

  33. Levine DA, Galecki AT, Langa KM et al (2015) Trajectory of cognitive decline after incident stroke. JAMA 314(1):41–51. https://doi.org/10.1001/jama.2015.6968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chui D, Chen Z, Yu J et al (2011) Magnesium in Alzheimer’s disease. In: Vink R, Nechifor M (eds) Magnesium in the central nervous system. University of Adelaide Press, Adelaide

    Google Scholar 

  35. Billard JM (2011) Brain free magnesium homeostasis as a target for reducing cognitive aging. In: Vink R, Nechifor M (eds) Magnesium in the central nervous system. University of Adelaide Press, Adelaide

    Google Scholar 

  36. Furukawa Y, Kasai N, Torimitsu K (2009) Effect of Mg2 + on neural activity of rat cortical and hippocampal neurons in vitro. Magnes Res 22(3):174s–181s

    Article  CAS  Google Scholar 

  37. Landfield PW, Morgan GA (1984) Chronically elevating plasma Mg2 + improves hippocampal frequency potentiation and reversal learning in aged and young rats. Brain Res 322(1):167–171

    Article  CAS  Google Scholar 

  38. Matsuda H, Saigusa A, Irisawa H (1987) Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325(7000):156–159. https://doi.org/10.1038/325156a0

    Article  CAS  PubMed  Google Scholar 

  39. Slutsky I, Sadeghpour S, Li B, Liu G (2004) Enhancement of synaptic plasticity through chronically reduced Ca2 + flux during uncorrelated activity. Neuron 44(5):835–849. https://doi.org/10.1016/j.neuron.2004.11.013

    Article  CAS  PubMed  Google Scholar 

  40. Xu ZP, Li L, Bao J et al (2014) Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer’s model. PLoS ONE 9(9):e108645. https://doi.org/10.1371/journal.pone.0108645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9(1):65–75. https://doi.org/10.1038/nrn2303

    Article  CAS  PubMed  Google Scholar 

  42. Hans CP, Chaudhary DP, Bansal DD (2003) Effect of magnesium supplementation on oxidative stress in alloxanic diabetic rats. Magnes Res 16(1):13–19

    CAS  PubMed  Google Scholar 

  43. Yang Y, Wu Z, Chen Y et al (2006) Magnesium deficiency enhances hydrogen peroxide production and oxidative damage in chick embryo hepatocyte in vitro. Biometals 19(1):71–81. https://doi.org/10.1007/s10534-005-6898-1

    Article  CAS  PubMed  Google Scholar 

  44. Nielsen FH (2018) Magnesium deficiency and increased inflammation: current perspectives. J Inflamm Res 11:25–34. https://doi.org/10.2147/jir.s136742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morais JB, Severo JS, Santos LR et al (2017) Role of magnesium in oxidative stress in individuals with obesity. Biol Trace Elem Res 176(1):20–26. https://doi.org/10.1007/s12011-016-0793-1

    Article  CAS  PubMed  Google Scholar 

  46. Malon A, Brockmann C, Fijalkowska-Morawska J, Rob P, Maj-Zurawska M (2004) Ionized magnesium in erythrocytes–the best magnesium parameter to observe hypo- or hypermagnesemia. Clin Chim Acta 349(1–2):67–73. https://doi.org/10.1016/j.cccn.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  47. Reddy ST, Soman SS, Yee J (2018) Magnesium balance and measurement. Adv Chronic Kidney Dis 25(3):224–229. https://doi.org/10.1053/j.ackd.2018.03.002

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the other investigators, the staff, and the participants of the REGARDS study for their valuable contributions. A full list of participating REGARDS investigators and institutions can be found at http://www.regardsstudy.org.

Funding

This study is supported by a research grant from the NIH (R01AG056111). The REGARDS research project is supported by a National Institute of Neurological Disorders and Stroke, National Institutes of Health, and Department of Health and Human Services cooperative agreement U01-NS-041588. Additional support was provided by Centers for Disease Control and Prevention cooperative agreement U01-DP-006302. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Neurological Disorders and Stroke, the National Institutes of Health, the Centers for Disease Control and Prevention, or the Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Contributions

KH contributed to study concept and design, and acquisition of data. CC analyzed and interpreted data, and drafted manuscript. All co-authors contributed to critical revision of manuscript for intellectual content.

Corresponding author

Correspondence to Ka He.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Xun, P., Unverzagt, F. et al. Serum magnesium concentration and incident cognitive impairment: the reasons for geographic and racial differences in stroke study. Eur J Nutr 60, 1511–1520 (2021). https://doi.org/10.1007/s00394-020-02353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02353-7

Navigation