Skip to main content
Log in

Cranberry (Vaccinium macrocarpon) extract treatment improves triglyceridemia, liver cholesterol, liver steatosis, oxidative damage and corticosteronemia in rats rendered obese by high fat diet

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Obese individuals have higher production of reactive oxygen species, which leads to oxidative damage. We hypothesize that cranberry extract (CE) can improve this dysfunction in HFD-induced obesity in rats since it has an important antioxidant activity. Here, we evaluated the effects of CE in food intake, adiposity, biochemical and hormonal parameters, lipogenic and adipogenic factors, hepatic morphology and oxidative balance in a HFD model.

Methods

At postnatal day 120 (PN120), male Wistar rats were assigned into two groups: (1) SD (n = 36) fed with a standard diet and (2) HFD (n = 36), fed with a diet containing 44.5% (35.2% from lard) energy from fat. At PN150, 12 animals from SD and HFD groups were killed while the others were subdivided into four groups (n = 12/group): animals that received 200 mg/kg cranberry extract (SD CE, HFD CE) gavage/daily/30 days or water (SD, HFD). At PN180, animals were killed.

Results

HFD group showed higher body mass and visceral fat, hypercorticosteronemia, higher liver glucocorticoid sensitivity, cholesterol and triglyceride contents and microsteatosis. Also, HFD group had higher lipid peroxidation (plasma and tissues) and higher protein carbonylation (liver and adipose tissue) compared to SD group. HFD CE group showed lower body mass gain, hypotrygliceridemia, hypocorticosteronemia, and lower hepatic cholesterol and fatty acid synthase contents. HFD CE group displayed lower lipid peroxidation, protein carbonylation (liver and adipose tissue) and accumulation of liver fat compared to HFD group.

Conclusion

Although adiposity was not completely reversed, cranberry extract improved the metabolic profile and reduced oxidative damage and steatosis in HFD-fed rats, which suggests that it can help manage obesity-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M (2011) Inflammation, oxidative stress and obesity. Int J Mol Sci 12:3117–3132. doi:10.3390/ijms12053117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sikaris KA (2004) The clinical biochemistry of obesity. Clin Biochem Rev 25:165–181

    PubMed  PubMed Central  Google Scholar 

  3. Ruperez AI, Gil A, Aguilera CM (2014) Genetics of oxidative stress in obesity. Int J Mol Sci 15:3118–3144. doi:10.3390/ijms15023118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rupérez AI, Olza J, Gil-Campos M, Leis R, Mesa MD, Tojo R, Cañete R, Gil Á, Aguilera CM (2014) Association of genetic polymorphisms for glutathione peroxidase genes with obesity in spanish children. J Nutrigenet Nutrigenom 7:130–142. doi:10.1159/000368833

    Article  CAS  Google Scholar 

  5. Pitocco D, Zaccardi F, Di Stasio E, Romitelli F, Santini SA, Zuppi C, Ghirlanda G (2010) Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud 7:15–25. doi:10.1900/RDS.2010.7.15

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hogdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    Article  Google Scholar 

  7. Mukherjee M, Bandyopadhyay P, Kundu D (2014) Exploring the role of cranberry polyphenols in periodontits: a brief review. J Indian Soc Periodontol 18:136–139

    Article  PubMed  PubMed Central  Google Scholar 

  8. Howell AB, Reed JD, Krueger CG, Winterbottom R, Cunningham DG, Leahy M (2005) A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry 66:2281–2291

    Article  CAS  PubMed  Google Scholar 

  9. Ruel G, Pomerleau S, Couture P, Lemieux S, Lamarche B, Couillard C (2006) Favourable impact of low-calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. Br J Nutr 96:357–364

    Article  CAS  PubMed  Google Scholar 

  10. Denis MC, Desjardins Y, Furtos A, Marcil V, Dudonné S, Montoudis A, Garofalo C, Delvin E, Marette A, Levy E (2015) Prevention of oxidative stress, inflammation and mitochondrial dysfunction in the intestine by different cranberry phenolic fractions. Clin Sci (Lond) 128:197–212. doi:10.1042/CS20140210

    Article  CAS  Google Scholar 

  11. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A (2014) A polyphenol-rich cranberry extract protects from diet induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64:872–883. doi:10.1136/gutjnl-2014-307142

    Article  CAS  PubMed  Google Scholar 

  12. Boušová I, Bártíková H, Matoušková P, Lněničková K, Zappe L, Valentová K, Szotáková B, Martin J, Skálová L (2015) Cranberry extract–enriched diets increase NAD(P)H:quinone oxidoreductase and catalase activities in obese but not in nonobese mice. Nutr Res. 35:901–909. doi:10.1016/j.nutres.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  13. Lee J, Durst RW, Wrolstad RE (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int 88:1269–1278

    CAS  PubMed  Google Scholar 

  14. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  15. Sun B, Da-Silva JMR, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274

    Article  CAS  Google Scholar 

  16. Figueiredo MS, de Moura EG, Lisboa PC, Troina AA, Trevenzoli IH, Oliveira E, Boaventura GT, da Fonseca Passos MC (2009) Flaxseed supplementation of rats during lactation changes the adiposity and glucose homeostasis of their offspring. Life Sci 85:9–10. doi:10.1016/j.lfs.2009.06.018

    Article  CAS  Google Scholar 

  17. Guarda DS, Lisboa PC, de Oliveira E, Nogueira-Neto JF, de Moura EG, Figueiredo MS (2014) Flaxseed oil during lactation changes milk and body composition in male and female suckling pups rats. Food Chem Toxicol 69:69–75. doi:10.1016/j.fct.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  18. Matthews DR, Hosker JP, Rudenski AS (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  19. Figueiredo MS, da Conceição EP, de Oliveira E, Lisboa PC, de Moura EG (2015) Maternal flaxseed diet during lactation changes adrenal function in adult male rat offspring. Br J Nutr 114:1046–1053. doi:10.1017/S0007114515002184

    Article  CAS  PubMed  Google Scholar 

  20. Conceição EPS, Franco JG, Oliveira O, Resende AC, Amaral TA, Peixoto-Silva N, Passos MC, Moura EG, Lisboa PC (2013) Oxidative stress programming in rat model of postnatal early overnutrition—role of insulin resistance. J Nutr Biochem 24:81–87. doi:10.1016/j.jnutbio.2012.02.010

    Article  CAS  PubMed  Google Scholar 

  21. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymol. 186:464–478

    Article  CAS  Google Scholar 

  22. Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312

    CAS  PubMed  Google Scholar 

  23. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  24. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  PubMed  Google Scholar 

  25. Brown PN, Shipley PR (2011) Determination of anthocyanins in cranberry fruit and cranberry fruit products by high-performance liquid chromatography with ultraviolet detection: single-laboratory validation. J AOAC Int 94:459–466

    CAS  PubMed  Google Scholar 

  26. Mikulic-Petkovsek M, Slatnar A, Stampar F, Veberic R (2012) HPLC–MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem 135:2138–2146. doi:10.1016/j.foodchem.2012.06.115

    Article  CAS  PubMed  Google Scholar 

  27. Feghali K, Feldman M, La VD, Santos J, Grenier D (2012) Cranberry proanthocyanidins: natural weapons against periodontal diseases. J Agric Food Chem 60:5728–5735. doi:10.1021/jf203304v

    Article  CAS  PubMed  Google Scholar 

  28. Blumberg JB, Camesano TA, Cassidy A, Kris-Etherton P, Howell A, Manach C, Ostertag LM, Sies H, Skulas-Ray A, Vita JA (2013) Cranberries and their bioactive constituents in human health. Adv Nutr 4:618–632. doi:10.3945/an.113.004473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Çelik H, Özgen M, Serçec S, Kaya C (2008) Phytochemical accumulation and antioxidant capacity at four maturity stages of cranberry fruit. Sci Hortic 117:345–348. doi:10.1016/j.scienta.2008.05.005

    Article  CAS  Google Scholar 

  30. Carpenter JL, Caruso FL, Tata A, Vorsa N, Neto CC (2014) Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon). J Sci Food Agric 94:2738–2745. doi:10.1002/jsfa.6618

    Article  CAS  PubMed  Google Scholar 

  31. Côté J, Caillet S, Doyon G, Dussault D, Salmieri S, Lorenzo G, Sylvain JF, Lacroix M (2011) Effects of juice processing on cranberry antioxidant properties. Food Res Int 44:2907–2914

    Article  CAS  Google Scholar 

  32. Nardi GM, Farias Januario AG, Freire CG, Megiolaro F, Schneider K, Perazzoli MR, Do Nascimento SR, Gon AC, Mariano LN, Wagner G, Niero R, Locatelli C (2016) Anti-inflammatory activity of berry fruits in mice model of inflammation is based on oxidative stress modulation. Pharmacogn Res. doi:10.4103/0974-8490.178642

    Article  Google Scholar 

  33. Novotny JA, Baer DJ, Khoo C, Gebauer SK, Charron CS (2015) Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults. J Nutr 145:1185–1193

    Article  CAS  PubMed  Google Scholar 

  34. Jensen-Urstad AP, Semenkovich CF (2012) Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger. Biochim Biophys Acta 1821:747–753. doi:10.1016/j.bbalip.2011.09.017

    Article  CAS  PubMed  Google Scholar 

  35. Ioannou GN (2016) The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol Metab 27:84–95. doi:10.1016/j.tem.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  36. Muoio DM, Newgard CB (2004) Biomedicine. Insulin resistance takes a trip through the ER. Science 306(5695):425–426

    Article  CAS  PubMed  Google Scholar 

  37. Bhaswant M, Fanning K, Netzel M, Mathai ML, Panchal SK, Brown L (2015) Cyanidin 3-glucoside improves diet-induced metabolic syndrome in rats. Pharmacol Res 102:208–217. doi:10.1016/j.phrs.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  38. Sanders FW, Griffin JL (2015) De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol Rev Camb Philos Soc. doi:10.1111/brv.12178

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pawlak M, Lefebvre P, Staels B (2015) Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62:720–733. doi:10.1016/j.jhep.2014.10.039

    Article  CAS  PubMed  Google Scholar 

  40. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445. doi:10.1146/annurev-immunol-031210-101322

    Article  CAS  PubMed  Google Scholar 

  41. Mathison BD, Kimble LL, Kaspar KL, Khoo C, Chew BP (2014) Consumption of cranberry beverage improved endogenous antioxidant status and protected against bacteria adhesion in healthy humans: a randomized controlled trial. Nutr Res 4(5):420–427. doi:10.1016/j.nutres.2014.03.006

    Article  CAS  Google Scholar 

  42. Blumberg JB, Basu A, Krueger CG, Lila MA, Neto CC, Novotny JA, Reed JD, Rodriguez-Mateos A, Toner CD (2016) Impact of cranberries on gut microbiota and cardiometabolic health: proceedings of the cranberry health research conference 2015. Adv Nutr 7(4):759S–770S. doi:10.3945/an.116.012583

    Article  PubMed  PubMed Central  Google Scholar 

  43. Monk JM, Lepp D, Zhang CP, Wu W, Zarepoor L, Lu JT, Pauls KP, Tsao R, Wood GA, Robinson LE, Power KA (2016) Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation. J Nutr Biochem 28:129–139. doi:10.1016/j.jnutbio.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  44. Chang YC, Yu YH, Shew JY, Lee WJ, Hwang JJ, Chen YH, Chen YR, Wei PC, Chuang LM, Lee WH (2013) Deficiency of NPGPx, an oxidative stress sensor, leads to obesity in mice and human. EMBO Mol Med 5(8):1165–1179. doi:10.1002/emmm.201302679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Da Costa LA, Badawi A, EI-Sohemy A (2012) Nutrigenetics and modulation of oxidative stress. Ann Nutr Metab 60(Suppl 3):27–36. doi:10.1159/000337311

    Article  CAS  PubMed  Google Scholar 

  46. Stimson RH, Walker BR (2013) The role and regulation of 11β-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome. Horm Mol Biol Clin Investig 15:37–48. doi:10.1515/hmbci-2013-0015

    Article  CAS  PubMed  Google Scholar 

  47. Stimson RH, Andersson J, Andrew R, Redhead DN, Karpe F, Hayes PC, Olsson T, Walker BR (2009) Cortisol release from adipose tissue by 11β-hydroxysteroid dehydrogenase type 1 in humans. Diabetes 58:46–53. doi:10.2337/db08-0969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hughes KA, Manolopoulos KN, Iqbal J, Cruden NL, Stimson RH, Reynolds RM, Newby DE, Andrew R, Karpe F, Walker BR (2012) Recycling between cortisol and cortisone in human splanchnic, subcutaneous adipose, and skeletal muscle tissues in vivo. Diabetes. doi:10.2337/db11-1345

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Ulisses Siqueira and Miss Monica Moura for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: TCP, EGM, MSF, PCL. Animal treatment, collection of samples and measurements: TCP, PNS, DSG, DND, XXA, VSTR. Extract analyses: GRS, AJRS. Analysis and interpretation of data: TCP, EGM, EO, PNS, MSF, ACM, PCL. Drafting and/or revising the article critically for important intellectual content: TCP, EGM, EO, ACM, PCL. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Patrícia C. Lisboa.

Ethics declarations

Financial support

Research was supported by the National Council for Scientific and Technological Development (CNPq), the State of Rio de Janeiro Carlos Chagas Filho Research Foundation (FAPERJ) and Coordination for the Enhancement of Higher Education Personnel (CAPES).

Conflict of interest

The authors declare that they have no competing interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peixoto, T.C., Moura, E.G., de Oliveira, E. et al. Cranberry (Vaccinium macrocarpon) extract treatment improves triglyceridemia, liver cholesterol, liver steatosis, oxidative damage and corticosteronemia in rats rendered obese by high fat diet. Eur J Nutr 57, 1829–1844 (2018). https://doi.org/10.1007/s00394-017-1467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1467-2

Keywords

Navigation