Skip to main content
Log in

No association between blood telomere length and longitudinally assessed diet or adiposity in a young adult Filipino population

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Telomeres, DNA–protein structures that cap and protect chromosomes, are thought to shorten more rapidly when exposed to chronic inflammation and oxidative stress. Diet and nutritional status may be a source of inflammation and oxidative stress. However, relationships between telomere length (TL) and diet or adiposity have primarily been studied cross-sectionally among older, overweight/obese populations and yielded inconsistent results. Little is known about the relationship between diet or body composition and TL among younger, low- to normal-weight populations. It also remains unclear how cumulative exposure to a specific diet or body composition during the years of growth and development, when telomere attrition is most rapid, may be related to TL in adulthood.

Methods

In a sample of 1459 young adult Filipinos, we assessed the relationship between blood TL at ages 20.8–22.5 and measures of BMI z-score, waist circumference, and diet collected between the ages of 8.5 and 22.5. TL was measured using monochrome multiplex quantitative PCR, and diet was measured using multiple 24-h recalls.

Results

We found no associations between blood TL and any of the measures of adiposity or between blood TL and the seven dietary factors examined: processed meats, fried/grilled meats and fish, non-fried fish, coconut oil, fruits and vegetables, bread and bread products, and sugar-sweetened beverages.

Conclusions

Considering the inconsistencies in the literature and our null results, small differences in body composition and consumption of any single pro- or anti-inflammatory dietary component may not by themselves have a meaningful impact on telomere integrity, or the impact may differ across distinct ecological circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heidemann C, Schulze MB, Franco OH, van Dam RM, Mantzoros CS, Hu FB (2008) Dietary patterns and risk of mortality from cardiovascular disease, cancer, and all causes in a prospective cohort of women. Circulation 118:230–237

    Article  Google Scholar 

  2. Schulze MB, Fung TT, Manson JE, Willett WC, Hu FB (2006) Dietary patterns and changes in body weight in women. Obesity 14:1444–1453

    Article  Google Scholar 

  3. Popkin BM (2006) Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. Am J Clin Nutr 84:289–298

    CAS  Google Scholar 

  4. Hu FB, Rimm EB, Stampfer MJ, Ascherio A, Spiegelman D, Willett WC (2000) Prospective study of major dietary patterns and risk of coronary heart disease in men. Am J Clin Nutr 72:912–921

    CAS  Google Scholar 

  5. Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579:859–862

    Article  CAS  Google Scholar 

  6. de Lange T (2009) How telomeres solve the end-protection problem. Science 326:948–952

    Article  CAS  Google Scholar 

  7. O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11:171–181

    Google Scholar 

  8. Harley CB, Vaziri H, Counter CM, Allsopp RC (1992) The telomere hypothesis of cellular aging. Exp Gerontol 27:375–382

    Article  CAS  Google Scholar 

  9. Von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344

    Article  Google Scholar 

  10. Von Zglinicki T (2000) Role of oxidative stress in telomere length regulation and replicative senescence. Ann NY Acad Sci 908:99–110

    Article  Google Scholar 

  11. Kawanishi S, Oikawa S (2004) Mechanism of telomere shortening by oxidative stress. Ann NY Acad Sci 1019:278–284

    Article  CAS  Google Scholar 

  12. Aviv A (2004) Telomeres and human aging: facts and fibs. Sci Aging Knowl Environ 2004:pe43

    Article  Google Scholar 

  13. Houben JMJ, Moonen HJJ, van Schooten FJ, Hageman GJ (2008) Telomere length assessment: biomarker of chronic oxidative stress? Free Radic Biol Med 44:235–246

    Article  CAS  Google Scholar 

  14. Blackburn EH (2001) Switching and signaling at the telomere. Cell 106:661–673

    Article  CAS  Google Scholar 

  15. Blackburn EH (2000) Telomere states and cell fates. Nature 408:53–56

    Article  CAS  Google Scholar 

  16. Aviv A, Kark JD, Susser E (2015) Telomeres, atherosclerosis, and human longevity: a causal hypothesis. Epidemiology 26:295–299

    Article  Google Scholar 

  17. Lopez-Garcia E, Schulze MB, Fung TT, Meigs JB, Rifai N, Manson JE, Hu FB (2004) Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr 80:1029–1035

    CAS  Google Scholar 

  18. Chrysohoou C, Panagiotakos DB, Pitsavos C, Das UN, Stefanadis C (2004) Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: the Attica study. J Am Coll Cardiol 44:152–158

    Article  Google Scholar 

  19. Fitó M, Guxens M, Corella D et al (2007) Effect of a traditional Mediterranean diet on lipoprotein oxidation: a randomized controlled trial. Arch Intern Med 167:1195–1203

    Article  Google Scholar 

  20. Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, D’Armiento M, D’Andrea F, Giugliano D (2004) Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 292:1440–1446

    Article  CAS  Google Scholar 

  21. Margioris AN (2009) Fatty acids and postprandial inflammation. Curr Opin Clin Nutr Metab Care 12:129–137

    Article  CAS  Google Scholar 

  22. Kallio P, Kolehmainen M, Laaksonen DE, Pulkkinen L, Atalay M, Mykkänen H, Uusitupa M, Poutanen K, Niskanen L (2008) Inflammation markers are modulated by responses to diets differing in postprandial insulin responses in individuals with the metabolic syndrome. Am J Clin Nutr 87:1497–1503

    CAS  Google Scholar 

  23. Galland L (2010) Diet and inflammation. Nutr Clin Pract 25:634–640

    Article  Google Scholar 

  24. Schulze MB, Hoffmann K, Manson JE, Willett WC, Meigs JB, Weikert C, Heidemann C, Colditz GA, Hu FB (2005) Dietary pattern, inflammation, and incidence of type 2 diabetes in women. Am J Clin Nutr 82:675–684

    CAS  Google Scholar 

  25. Nettleton JA, Steffen LM, Mayer-Davis EJ, Jenny NS, Jiang R, Herrington DM, Jacobs DR (2006) Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 83:1369–1379

    CAS  Google Scholar 

  26. Gao X, Bermudez OI, Tucker KL (2004) Plasma C-reactive protein and homocysteine concentrations are related to frequent fruit and vegetable intake in Hispanic and non-Hispanic white elders. J Nutr 134:913–918

    CAS  Google Scholar 

  27. Holt EM, Steffen LM, Moran A, Basu S, Steinberger J, Ross JA, Hong C-P, Sinaiko AR (2009) Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. J Am Diet Assoc 109:414–421

    Article  CAS  Google Scholar 

  28. Kennedy A, Martinez K, Chuang C-C, LaPoint K, McIntosh M (2009) Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications. J Nutr 139:1–4

    Article  CAS  Google Scholar 

  29. Muñoz A, Costa M (2013) Nutritionally mediated oxidative stress and inflammation. Oxidative Med Cellular Longev 2013:610950. doi:10.1155/2013/610950

    Article  CAS  Google Scholar 

  30. Nicholls SJ, Lundman P, Harmer JA, Cutri B, Griffiths KA, Rye K-A, Barter PJ, Celermajer DS (2006) Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J Am Coll Cardiol 48:715–720

    Article  CAS  Google Scholar 

  31. Intahphuak S, Khonsung P, Panthong A (2010) Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil. Pharm Biol 48:151–157

    Article  CAS  Google Scholar 

  32. Marten B, Pfeuffer M, Schrezenmeir J (2006) Medium-chain triglycerides. Int Dairy J 16:1374–1382

    Article  CAS  Google Scholar 

  33. Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker GE, Vlassara H (2010) Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 110(911–916):e912

    Google Scholar 

  34. Vlassara H, Striker GE (2011) AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol 7:526–539

    Article  CAS  Google Scholar 

  35. Sun Q, Shi L, Prescott J, Chiuve SE, Hu FB, De Vivo I, Stampfer MJ, Franks PW, Manson JE, Rexrode KM (2012) Healthy lifestyle and leukocyte telomere length in U.S. women. PLoS One 7:e38374

    Article  CAS  Google Scholar 

  36. Boccardi V, Esposito A, Rizzo MR, Marfella R, Barbieri M, Paolisso G (2013) Mediterranean diet, telomere maintenance and health status among elderly. PLoS One 8:e62781

    Article  CAS  Google Scholar 

  37. Crous-Bou M, Fung TT, Prescott J, Julin B, Du M, Sun Q, Rexrode KM, Hu FB, De Vivo I (2014) Mediterranean diet and telomere length in Nurses’ Health Study: population based cohort study. BMJ 349:g6674

    Article  CAS  Google Scholar 

  38. Gu Y, Honig L, Schupf N, Lee J, Luchsinger J, Stern Y, Scarmeas N (2015) Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. AGE 37:1–13

    Article  CAS  Google Scholar 

  39. Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR (2008) Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 88:1405–1412

    CAS  Google Scholar 

  40. Lee JY, Jun NR, Yoon D, Shin C, Baik I (2015) Association between dietary patterns in the remote past and telomere length. Eur J Clin Nutr 69:1048–1052

    Article  Google Scholar 

  41. Tiainen AM, Männistö S, Blomstedt PA, Moltchanova E, Perälä MM, Kaartinen NE, Kajantie E, Kananen L, Hovatta I, Eriksson JG (2012) Leukocyte telomere length and its relation to food and nutrient intake in an elderly population. Eur J Clin Nutr 66:1290–1294

    Article  CAS  Google Scholar 

  42. Song Y, You N-CY, Song Y, Kang MK, Hou L, Wallace R, Eaton CB, Tinker LF, Liu S (2013) Intake of small-to-medium-chain saturated fatty acids is associated with peripheral leukocyte telomere length in postmenopausal women. J Nutr 143:907–914

    Article  CAS  Google Scholar 

  43. García-Calzón S, Moleres A, Martínez-González MA, Martínez JA, Zalba G, Marti A (2015) Dietary total antioxidant capacity is associated with leukocyte telomere length in a children and adolescent population. Clin Nutr 34:694–699

    Article  CAS  Google Scholar 

  44. Leung CW, Laraia BA, Needham BL, Rehkopf DH, Adler NE, Lin J, Blackburn EH, Epel ES (2014) Soda and cell aging: associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. Am J Public Health 104:2425–2431

    Article  Google Scholar 

  45. Marcon F, Siniscalchi E, Crebelli R, Saieva C, Sera F, Fortini P, Simonelli V, Palli D (2012) Diet-related telomere shortening and chromosome stability. Mutagenesis 27:49–57

    Article  CAS  Google Scholar 

  46. Hou L, Savage SA, Blaser MJ, Perez-Perez G, Hoxha M, Dioni L, Pegoraro V, Dong LM, Zatonski W, Lissowska J, Chow W-H, Baccarelli A (2009) Telomere length in peripheral leukocyte DNA and gastric cancer risk. Cancer Epidemiol Biomark Prev 18:3103–3109

    Article  CAS  Google Scholar 

  47. O’Callaghan N, Parletta N, Milte CM, Benassi-Evans B, Fenech M, Howe PRC (2014) Telomere shortening in elderly individuals with mild cognitive impairment may be attenuated with ω-3 fatty acid supplementation: a randomized controlled pilot study. Nutrition 30:489–491

    Article  CAS  Google Scholar 

  48. Chan R, Woo J, Suen E, Leung J, Tang N (2010) Chinese tea consumption is associated with longer telomere length in elderly Chinese men. Br J Nutr 103:107–113

    Article  CAS  Google Scholar 

  49. Kark JD, Goldberger N, Kimura M, Sinnreich R, Aviv A (2012) Energy intake and leukocyte telomere length in young adults. Am J Clin Nutr 95:479–487

    Article  CAS  Google Scholar 

  50. Cassidy A, De Vivo I, Liu Y, Han J, Prescott J, Hunter DJ, Rimm EB (2010) Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr 91:1273–1280

    Article  CAS  Google Scholar 

  51. Bekaert S, De Meyer T, Rietzschel ER, De Buyzere ML, De Bacquer D, Langlois M, Segers P, Cooman L, Van Damme P, Cassiman P, Van Criekinge W, Verdonck P, De Backer GG, Gillebert TC, Van Oostveldt P (2007) Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell 6:639–647

    Article  CAS  Google Scholar 

  52. Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7

    Article  CAS  Google Scholar 

  53. Keaney JF, Larson MG, Vasan RS, Wilson PWF, Lipinska I, Corey D, Massaro JM, Sutherland P, Vita JA, Benjamin EJ (2003) Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol 23:434–439

    Article  CAS  Google Scholar 

  54. Zhu H, Bhagatwala J, Pollock NK, Parikh S, Gutin B, Stallmann-Jorgensen I, Thomas J, Harshfield GA, Dong Y (2015) High sodium intake is associated with short leukocyte telomere length in overweight and obese adolescents. Int J Obes 39:1249–1253

    Article  CAS  Google Scholar 

  55. Benetos A, Kark JD, Susser E, Kimura M, Sinnreich R, Chen W, Steenstrup T, Christensen K, Herbig U, von Bornemann Hjelmborg J, Srinivasan SR, Berenson GS, Labat C, Aviv A (2013) Tracking and fixed ranking of leukocyte telomere length across the adult life course. Aging Cell 12:615–621

    Article  CAS  Google Scholar 

  56. Milne E, O’Callaghan N, Ramankutty P, de Klerk NH, Greenop KR, Armstrong BK, Miller M, Fenech M (2015) Plasma micronutrient levels and telomere length in children. Nutrition 31:331–336

    Article  CAS  Google Scholar 

  57. Buxton JL, Walters RG, Visvikis-Siest S, Meyre D, Froguel P, Blakemore AI (2011) Childhood obesity is associated with shorter leukocyte telomere length. J Clin Endocrinol Metab 96:1500–1505

    Article  CAS  Google Scholar 

  58. Al-Attas OS, Al-Daghri N, Bamakhramah A, Shaun Sabico S, McTernan P, Huang T-K (2010) Telomere length in relation to insulin resistance, inflammation and obesity among Arab youth. Acta Paediatr 99:896–899

    Article  CAS  Google Scholar 

  59. Buxton JL, Das S, Rodriguez A, Kaakinen M, Couto Alves A, Sebert S, Millwood IY, Laitinen J, O’Reilly PF, Jarvelin M-R, Blakemore AIF (2014) Multiple measures of adiposity are associated with mean leukocyte telomere length in the northern Finland birth cohort 1966. PLoS One 9:e99133

    Article  CAS  Google Scholar 

  60. Lee M, Martin H, Firpo MA, Demerath EW (2011) Inverse association between adiposity and telomere length: the Fels Longitudinal Study. Am J Hum Biol 23:100–106

    Article  CAS  Google Scholar 

  61. Zannolli R, Mohn A, Buoni S, Pietrobelli A, Messina M, Chiarelli F, Miracco C (2008) Telomere length and obesity. Acta Paediatr 97:952–954

    Article  CAS  Google Scholar 

  62. Zhu H, Wang X, Gutin B, Davis CL, Keeton D, Thomas J, Stallmann-Jorgensen I, Mooken G, Bundy V, Snieder H (2011) Leukocyte telomere length in healthy Caucasian and African-American adolescents: relationships with race, sex, adiposity, adipokines, and physical activity. J Pediatr 158:215–220

    Article  Google Scholar 

  63. Adair LS, Popkin BM (2005) Are child eating patterns being transformed globally? Obes Res 13:1281–1299

    Article  Google Scholar 

  64. Kelles A, Adair L (2009) Offspring consume a more obesogenic diet than mothers in response to changing socioeconomic status and urbanization in Cebu, Philippines. Int J Behav Nutr Phys Act 6:47

    Article  Google Scholar 

  65. Pedro MRA, Barba CV, Benavides-de Leon R (2008) Nutrition transition in the Philippines. Philippine Population Review 6:1–19

    Article  Google Scholar 

  66. Adair LS, Gultiano S, Suchindran C (2011) 20-year trends in Filipino women’s weight reflect substantial secular and age effects. J Nutr 141:667–673

    Article  CAS  Google Scholar 

  67. Food and Nutrition Research Institute (2012) Philippine nutrition: facts and figures 2011. Food and Nutrition Research Institute – Department of Science and Technology, Taguig City

  68. Adair LS (2004) Dramatic rise in overweight and obesity in adult filipino women and risk of hypertension. Obes Res 12:1335–1341

    Article  Google Scholar 

  69. Drewnowski A, Popkin BM (1997) The nutrition transition: new trends in the global diet. Nutr Rev 55:31–43

    Article  CAS  Google Scholar 

  70. Ke-You G, Da-Wei F (2001) The magnitude and trends of under- and over-nutrition in Asian countries. Biomed Environ Sci 14:53–60

    CAS  Google Scholar 

  71. Adair LS, Popkin BM, Akin JS, Guilkey DK, Gultiano S, Borja J, Perez L, Kuzawa CW, McDade T, Hindin MJ (2011) Cohort profile: the Cebu Longitudinal Health and Nutrition Survey. Int J Epidemiol 40:619–625

    Article  Google Scholar 

  72. Feranil A, Gultiano S, Adair L (2008) The Cebu longitudinal health and nutrition survey: two decades later. Asia Pac Popul J 23:39–54

    Google Scholar 

  73. Eisenberg DTA, Hayes MG, Kuzawa CW (2012) Delayed paternal age of reproduction in humans is associated with longer telomeres across two generations of descendants. Proc Natl Acad Sci 109:10251–10256

    Article  CAS  Google Scholar 

  74. Eisenberg DTA, Kuzawa CW, Hayes MG (2015) Improving qPCR telomere length assays: Controlling for well position effects increases statistical power. Am J Hum Biol 27(4):570–575. doi:10.1002/ajhb.22690

    Article  Google Scholar 

  75. Cawthon RM (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 37:e21

    Article  CAS  Google Scholar 

  76. Eisenberg DTA (2011) An evolutionary review of human telomere biology: the thrifty telomere hypothesis and notes on potential adaptive paternal effects. Am J Hum Biol 23:149–167

    Article  Google Scholar 

  77. World Health Organization (2007) Growth reference 5–19 years. World Health Organization, Geneva

    Google Scholar 

  78. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85:660–667

    Article  Google Scholar 

  79. de Onis M, Onyango A, Borghi E, Siyam A, Blossner M, Lutter C (2012) Worldwide implementation of the WHO child growth standards. Public Health Nutr 15:1603–1610

    Article  Google Scholar 

  80. Food and Nutrition Research Institute (1997) Food composition tables recommended for use in the Philippines. Manila, Philippines

    Google Scholar 

  81. Feranil AB, Duazo PL, Kuzawa CW, Adair LS (2011) Coconut oil predicts a beneficial lipid profile in pre-menopausal women in the Philippines. Asia Pac J Clin Nutr 20:190

    CAS  Google Scholar 

  82. Willett W (2013) Nutritional epidemiology. Oxford University Press, New York

    Google Scholar 

  83. Farzaneh-Far R, Lin J, Epel E, Lapham K, Blackburn E, Whooley MA (2010) Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the Heart and Soul Study. PLoS One 5:e8612

    Article  CAS  Google Scholar 

  84. Okuda K, Bardeguez A, Gardner JP, Rodriguez P, Ganesh V, Kimura M, Skurnick J, Awad G, Aviv A (2002) Telomere length in the newborn. Pediatr Res 52:377–381

    Article  Google Scholar 

  85. Sanders JL, Newman AB (2013) Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev 35:112–131

    Article  Google Scholar 

  86. Croteau-Chonka DC, Marvelle AF, Lange EM, Lee NR, Adair LS, Lange LA, Mohlke KL (2011) Genome-wide association study of anthropometric traits and evidence of interactions with age and study year in Filipino women. Obesity 19:1019–1027

    Article  CAS  Google Scholar 

  87. Croteau-Chonka DC, Wu Y, Li Y, Fogarty MP, Lange LA, Kuzawa CW, McDade TW, Borja JB, Luo J, AbdelBaky O, Combs TP, Adair LS, Lange EM, Mohlke KL (2012) Population-specific coding variant underlies genome-wide association with adiponectin level. Hum Mol Genet 21:463–471

    Article  CAS  Google Scholar 

  88. Wu Y, McDade T, Kuzawa C, Borja J, Li Y, Adair L, Mohlke K, Lange L (2012) Genome-wide association with C-reactive protein levels in CLHNS: evidence for the CRP and HNF1A loci and their interaction with exposure to a pathogenic environment. Inflammation 35:574–583

    Article  CAS  Google Scholar 

  89. Dahly DL, Adair LS (2007) Quantifying the urban environment: a scale measure of urbanicity outperforms the urban–rural dichotomy. Soc Sci Med 64:1407–1419

    Article  Google Scholar 

  90. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366:662–664

    Article  CAS  Google Scholar 

  91. Cherkas LF, Aviv A, Valdes AM, Hunkin JL, Gardner JP, Surdulescu GL, Kimura M, Spector TD (2006) The effects of social status on biological aging as measured by white-blood-cell telomere length. Aging Cell 5:361–365

    Article  CAS  Google Scholar 

  92. Needham BL, Adler N, Gregorich S, Rehkopf D, Lin J, Blackburn EH, Epel ES (2013) Socioeconomic status, health behavior, and leukocyte telomere length in the National Health and Nutrition Examination Survey, 1999–2002. Soc Sci Med 85:1–8

    Article  Google Scholar 

  93. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 101:17312–17315

    Article  CAS  Google Scholar 

  94. World Health Organization Expert Consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363:157

    Article  Google Scholar 

  95. Nordfjäll K, Eliasson M, Stegmayr B, Melander O, Nilsson P, Roos G (2008) Telomere length is associated with obesity parameters but with a gender difference. Obesity 16:2682–2689

    Article  CAS  Google Scholar 

  96. Müezzinler A, Zaineddin AK, Brenner H (2014) Body mass index and leukocyte telomere length in adults: a systematic review and meta-analysis. Obes Rev 15:192–201

    Article  Google Scholar 

  97. Dirks AJ, Leeuwenburgh C (2006) Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev 127:1–7

    Article  Google Scholar 

  98. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8:18–30

    Article  CAS  Google Scholar 

  99. McDade TW, Rutherford JN, Adair L, Kuzawa C (2009) Population differences in associations between C-reactive protein concentration and adiposity: comparison of young adults in the Philippines and the United States. Am J Clin Nutr 89:1237–1245

    Article  CAS  Google Scholar 

  100. McDade TW, Tallman PS, Adair LS, Borja J, Kuzawa CW (2011) Comparative insights into the regulation of inflammation: levels and predictors of interleukin 6 and interleukin 10 in young adults in the Philippines. Am J Phys Anthropol 146:373–384

    Article  Google Scholar 

  101. Hunt SC, Kark JD, Aviv A (2015) Association between shortened leukocyte telomere length and cardio-metabolic outcomes. Circ Cardiovasc Genet 8:4–7

    Article  Google Scholar 

  102. Wang S, Meckling KA, Marcone MF, Kakuda Y, Tsao R (2011) Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J Agric Food Chem 59:960–968

    Article  CAS  Google Scholar 

  103. Mirabello L, Huang W-Y, Wong JYY, Chatterjee N, Reding D, David Crawford E, De Vivo I, Hayes RB, Savage SA (2009) The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell 8:405–413

    Article  CAS  Google Scholar 

  104. Livingstone M, Robson P, Wallace J (2004) Issues in dietary intake assessment of children and adolescents. Br J Nutr 92:S213–S222

    Article  CAS  Google Scholar 

  105. Kristal AR, Peters U, Potter JD (2005) Is it time to abandon the food frequency questionnaire? Cancer Epidemiol Biomark Prev 14:2826–2828

    Article  Google Scholar 

  106. Robertson T, Batty GD, Der G, Fenton C, Shiels PG, Benzeval M (2013) Is socioeconomic status associated with biological aging as measured by telomere length? Epidemiol Rev 35:98–111

    Article  Google Scholar 

Download references

Acknowledgments

Partial support for this research came from a National Science Foundation Graduate Research Fellowship (DGE-0718145 and DGE-1256082) to HJB and Shanahan Endowment Fellowship and Eunice Kennedy Shriver National Institute of Child Health and Human Development research infrastructure and training grants (R24 HD042828 and T32 HD007543) to the Center for Studies in Demography and Ecology at the University of Washington. The qPCR laboratory analysis was funded by National Science Foundation (Doctoral Dissertation Improvement Grant BCS-0962282), the Wenner-Gren Foundation (Gr. 8111), and institutional support from Northwestern University. Data and sample collection was funded by the National Institute of Health (Grants TW05596, DK078150, RR20649, ES10126, and DK056350). Importantly, we would like to acknowledge the participants and staff of the Cebu Longitudinal Health and Nutrition Survey who made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilary J. Bethancourt.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bethancourt, H.J., Kratz, M., Beresford, S.A.A. et al. No association between blood telomere length and longitudinally assessed diet or adiposity in a young adult Filipino population. Eur J Nutr 56, 295–308 (2017). https://doi.org/10.1007/s00394-015-1080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-1080-1

Keywords

Navigation