Skip to main content

Advertisement

Log in

Diets rich in saturated fat and/or salt differentially modulate atrial natriuretic peptide and renin expression in C57BL/6 mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To study the effects of a diet rich in salt and/or saturated fat on atrial natriuretic peptide (ANP)-granules, hypertension, renin expression, and cardiac structure in C57Bl/6 mice.

Methods

Young adult male mice were separated into four groups (n = 12) and fed one of the following for 9 weeks: standard chow/normal salt (SC-NS), high-fat chow/normal salt (HF-NS), standard chow/high salt (SC-HS) and high-fat chow/high salt (HF-HS). Alterations in the serum ANP, ultrastructural analysis of cardiomyocytes that produce ANP, structural analysis of the left ventricle, blood pressure, renin expression, glomerular filtration rate (GFR), feed efficiency, and lipid and glucose parameters were examined.

Results

The HF-NS diet showed a small increase in ANP production and left ventricular hypertrophy, increased food efficiency, and abnormal lipid and glucose parameters. The SC-HS diet showed a large increase in ANP granules in myocytes and corresponding elevation in ANP serum levels, left ventricular hypertrophy, hypertension, decrease in renin levels, and increase in GFR. The combination of the two diets (HF-HS) had an additive effect.

Conclusion

The incorporation of a high-fat high-salt diet induced ultrastructural changes in cardiomyocytes, increased the production of ANP and increased its serum level, and reduced the amount of renin in the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nicholls MG, Espiner EA, Ikram H, Crozier IG, Richards AM (1987) Atrial natriuretic peptide in human hypertension. Eur Heart J 8(Suppl B):123–128

    Google Scholar 

  2. Zhao D, Pandey KN, Navar LG (2010) ANP-mediated inhibition of distal nephron fractional sodium reabsorption in wild-type and mice overexpressing natriuretic peptide receptor. Am J Physiol Renal Physiol 298:F103–F108

    Article  CAS  Google Scholar 

  3. Aneja A, El-Atat F, McFarlane SI, Sowers JR (2004) Hypertension and obesity. Recent Prog Horm Res 59:169–205

    Article  CAS  Google Scholar 

  4. Aguila MB, Mandarim-de-Lacerda CA (2003) Effects of chronic high fat diets on renal function and cortical structure in rats. Exp Toxicol Pathol 55:187–195

    Article  CAS  Google Scholar 

  5. Aguila MB, Mandarim-de-Lacerda CA (2003) Heart and blood pressure adaptations in Wistar rats fed with different high-fat diets for 18 months. Nutrition 19:347–352

    Article  CAS  Google Scholar 

  6. Beilin LJ (1999) Lifestyle and hypertension—an overview. Clin Exp Hypertens 21:749–762

    Article  CAS  Google Scholar 

  7. Dobrian AD, Schriver SD, Lynch T, Prewitt RL (2003) Effect of salt on hypertension and oxidative stress in a rat model of diet-induced obesity. Am J Physiol Renal Physiol 285:F619–F628

    CAS  Google Scholar 

  8. Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA (2010) A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr 46:212–223

    Article  CAS  Google Scholar 

  9. Gallou-Kabani C, Vige A, Gross MS, Rabes JP, Boileau C, Larue-Achagiotis C, Tome D, Jais JP, Junien C (2007) C57BL/6J and A/J mice fed a high-fat diet delineate components of metabolic syndrome. Obesity (Silver Spring) 15:1996–2005

    Article  CAS  Google Scholar 

  10. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  Google Scholar 

  11. Pestel S, Krzykalla V, Weckesser G (2007) Measurement of glomerular filtration rate in the conscious rat. J Pharmacol Toxicol Methods 56:277–289

    Article  CAS  Google Scholar 

  12. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  Google Scholar 

  13. Mandarim-de-Lacerda CA, Fernandes-Santos C, Aguila MB (2010) Image analysis and quantitative morphology. Methods Mol Biol 611:211–225

    Article  Google Scholar 

  14. Atshaves BP, McIntosh AL, Storey SM, Landrock KK, Kier AB, Schroeder F (2010) High dietary fat exacerbates weight gain and obesity in female liver fatty acid binding protein gene-ablated mice. Lipids 45:97–110

    Article  CAS  Google Scholar 

  15. Gregorio BM, Souza-Mello V, Carvalho JJ, Mandarim-de-Lacerda CA, Aguila MB (2010) Maternal high-fat intake predisposes nonalcoholic fatty liver disease in C57BL/6 offspring. Am J Obstet Gynecol 203:495 e491–495 e498

    Google Scholar 

  16. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. Jama 288:2709–2716

    Article  Google Scholar 

  17. McDonald M, Hertz RP, Unger AN, Lustik MB (2009) Prevalence, awareness, and management of hypertension, dyslipidemia, and diabetes among United States adults aged 65 and older. J Gerontol A Biol Sci Med Sci 64:256–263

    Article  Google Scholar 

  18. Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, Rodes-Cabau J, Bertrand OF, Poirier P (2008) Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 28:1039–1049

    Article  CAS  Google Scholar 

  19. Reaven GM (2005) Insulin resistance, the insulin resistance syndrome, and cardiovascular disease. Panminerva Med 47:201–210

    CAS  Google Scholar 

  20. Shehata MF (2008) Genetic and dietary salt contributors to insulin resistance in Dahl salt-sensitive (S) rats. Cardiovasc Diabetol 7:7

    Article  Google Scholar 

  21. Bayorh MA, Ganafa AA, Emmett N, Socci RR, Eatman D, Fridie IL (2005) Alterations in aldosterone and angiotensin II levels in salt-induced hypertension. Clin Exp Hypertens 27:355–367

    CAS  Google Scholar 

  22. Le Corvoisier P, Adamy C, Sambin L, Crozatier B, Berdeaux A, Michel JB, Hittinger L, Su J (2010) The cardiac renin-angiotensin system is responsible for high-salt diet-induced left ventricular hypertrophy in mice. Eur J Heart Fail 12:1171–1178

    Article  CAS  Google Scholar 

  23. Alpert MA (2001) Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci 321:225–236

    Article  CAS  Google Scholar 

  24. Singh R, Krishan P (2010) Modulation of impact of high fat diet in pathological and physiological left ventricular cardiac hypertrophy by fluvastatin. Biomed Pharmacother 64:147–153

    Article  CAS  Google Scholar 

  25. Okere IC, Young ME, McElfresh TA, Chess DJ, Sharov VG, Sabbah HN, Hoit BD, Ernsberger P, Chandler MP, Stanley WC (2006) Low carbohydrate/high-fat diet attenuates cardiac hypertrophy, remodeling, and altered gene expression in hypertension. Hypertension 48:1116–1123

    Article  CAS  Google Scholar 

  26. Yuan K, Kim SY, Oh YB, Yu J, Shah A, Park BH, Kim SH (2010) Upregulation of ANP and NPR-C mRNA in the kidney and heart of eNOS knockout mice. Peptides 31:1319–1325

    Article  CAS  Google Scholar 

  27. Gama EF, Liberti EA, de Souza RR (2007) Effects of pre- and postnatal protein deprivation on atrial natriuretic peptide- (ANP-) granules of the right auricular cardiocytes. An ultrastructural morphometric study. Eur J Nutr 46:245–250

    Article  CAS  Google Scholar 

  28. Lantelme P, Rohrwasser A, Gociman B, Hillas E, Cheng T, Petty G, Thomas J, Xiao S, Ishigami T, Herrmann T, Terreros DA, Ward K, Lalouel JM (2002) Effects of dietary sodium and genetic background on angiotensinogen and Renin in mouse. Hypertension 39:1007–1014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mss. Nemesis M. L. S. Monteiro and Mr. Eduardo M. Costa, for their help in the care of the animals. Furthermore, they thank Mrs. Thatiany Marinho and Angelica Figeuiredo for their technical assistance. This research was supported by grants from Brazilian agencies, CNPq (Conselho Nacional de Ciencia e Tecnologia, Ministerio da Ciencia e Tecnologia, Brazil) and FAPERJ (Fundaçao do Amparo a Pesquisa do Estado do Rio de Janeiro).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Mandarim-de-Lacerda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, M.V., Fernandes-Santos, C., Faria, T.d.S. et al. Diets rich in saturated fat and/or salt differentially modulate atrial natriuretic peptide and renin expression in C57BL/6 mice. Eur J Nutr 51, 89–96 (2012). https://doi.org/10.1007/s00394-011-0196-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0196-1

Keywords

Navigation