Abstract
Background
Selenium (Se) is a trace element suggested to act chemopreventive in lung cancer. The mechanism by which Se suppresses tumour development may be associated with some of the functions of selenoproteins, including 15 kDa selenoprotein (Sep15). This protein exhibits antioxidant properties and thus may be involved in the process of carcinogenesis. Recently, it has been shown that the genetic polymorphism of Sep15, resulting in different response of the protein to Se, is associated with the risk of breast and head and neck cancers.
Aim of the study
The aim of the study was to investigate the possible association between lung cancer risk and Sep15 polymorphism in combination with Se status in the Polish population.
Methods
The study concerned 325 cases and 287 controls. All the participants were smokers. Plasma Se concentration was determined using graphite furnace atomic absorption spectrometry, and Sep15 polymorphism (1125 G/A transition within 3′-untranslated region) was detected with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay.
Results
The adjusted odds ratios (ORs) for lung cancer cases, compared to individuals with Sep15 wild type variant (GG), were: 0.91 (95% CI: 0.64–1.32) for the heterozygous variant (GA) and 0.80 (95% CI: 0.39–1.65) for the homozygous variant (AA). Although plasma Se concentration was statistically lower in lung cancer cases (49.4 ± 17.4 ng/ml) compared to controls (53.3 ± 14.0 ng/ml, p < 0.002), the analysis of the joint effect of Sep15 polymorphism and Se status for lung cancer development revealed that lung cancer risk differed between the Se15 genotype groups. An increasing Se concentration was associated with a decreased risk in all individuals; however, at Se concentration above 80 ng/ml, the risk started to increase in individuals possessing the Sep15 1125 GG or GA genotype.
Conclusions
It appears that among smoking individuals, those with the Sep15 1125 AA genotype may benefit most from a higher Se intake, whereas in those with the GG or GA genotype, a higher Se status may increase the risk for lung cancer.

Similar content being viewed by others
References
Abidoye O, Ferguson MK, Salgia R (2007) Lung carcinoma in African Americans. Nat Clin Pract Oncol 4:118–129
Apostolou S, Klein JO, Mitsuuchi Y, Shetler JN, Poulikakos PI, Jhanwar SC, Kruger WD, Testa JR (2004) Growth inhibition and induction of apoptosis in mesothelioma cells by selenium and dependence on selenoprotein SEP15 genotype. Oncogene 23:5032–5040
Bockmühl U, Schwendel A, Dietel M, Petersen I (1996) Distinct patterns of chromosomal alterations in high- and low-grade head and neck squamous cell carcinoma. Cancer Res 56:5325–5329
Bukalis K, Alber D, Bukalis G, Behne D, Kyriakopoulos A (2007) Effects of selenium diet on expression of selenoproteins in the lung of the rat. Ann N Y Acad Sci 1095:467–472
Bukalis K, Wolf C, Behne D, Kyriakopoulos A (2007) Studies on the selenoproteome in the cultured cells of lung and trachea by gel electrophoretic techniques. J Chromatogr A 1155:180–186
Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr, Park HK, Sanders BB Jr, Smith CL, Taylor JR (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 276:1957–1963
Ferguson AD, Labunskyy VM, Fomenko DE, Araç D, Chelliah Y, Amezcua CA, Rizo J, Gladyshev VN, Deisenhofer J (2006) NMR structures of the selenoproteins Sep15 and SelM reveal redox activity of a new thioredoxin-like family. J Biol Chem 281:3536–3543
Garland M, Morris JS, Stampfer MJ, Colditz GA, Spate VL, Baskett CK, Rosner B, Speizer FE, Willett WC, Hunter DJ (1995) Prospective study of toenail selenium levels and cancer among women. J Natl Cancer Inst 87:497–505
Girard L, Zochbauer-Muller S, Virmani AK, Gazdar AF, Minna JD (2000) Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res 60:4894–4906
Gladyshev VN, Jeang KT, Wootton JC, Hatfield DL (1998) A new human selenium-containing protein. Purification, characterization, and cDNA sequence. J Biol Chem 273:8910–8915
Gromadzinska J, Wasowicz W, Rydzynski K, Szeszenia-Dabrowska N (2003) Oxidative-stress markers in blood of lung cancer patients occupationally exposed to carcinogens. Biol Trace Elem Res 91:203–215
Haiman CA, Stram DO, Wilkens LR, Pike MC, Kolonel LN, Henderson BE, Le Marchand L (2006) Ethnic and racial differences in the smoking-related risk of lung cancer. N Engl J Med 354:333–342
Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22:3565–3576
Hu YJ, Korotkov KV, Mehta R, Hatfield DL, Rotimi CN, Luke A, Prewitt TE, Cooper RS, Stock W, Vokes EE, Dolan ME, Gladyshev VN, Diamond AM (2001) Distribution and functional consequences of nucleotide polymorphisms in the 3′-untranslated region of the human Sep15 gene. Cancer Res 61:2307–2310
Kalcklosch M, Kyriakopoulos A, Hammel C, Behne D (1995) A new selenoprotein found in the glandular epithelial cells of the rat prostate. Biochem Biophys Res Commun 217:162–170
Knekt P, Marniemi J, Teppo L, Heliovaara M, Aromaa A (1998) Is low selenium status a risk factor for lung cancer? Am J Epidemiol 148:975–982
Kohno T, Yokota J (1999) How many tumor suppressor genes are involved in human lung carcinogenesis? Carcinogenesis 20:1403–1410
Korotkov KV, Kumaraswamy E, Zhou Y, Hatfield DL, Gladyshev VN (2001) Association between the 15-kDa selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J Biol Chem 276:15330–15336
Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443
Kumaraswamy E, Malykh A, Korotkov KV, Kozyavkin S, Hu Y, Kwon SY, Moustafa ME, Carlson BA, Berry MJ, Lee BJ, Hatfield DL, Diamond AM, Gladyshev VN (2000) Structure–expression relationships of the 15-kDa selenoprotein gene. Possible role of the protein in cancer etiology. J Biol Chem 275:35540–35547
Kyriakopoulos A, Bukalis K, Roethlein D, Hoppe B, Graebert A, Behne D (2004) Prevention against oxidative stress of eukaryotic cell membranes by selenium compounds of the rat. Ann N Y Acad Sci 1030:458–461
Labunskyy VM, Ferguson AD, Fomenko DE, Chelliah Y, Hatfield DL, Gladyshev VN (2005) A novel cysteine-rich domain of Sep15 mediates the interaction with UDP-glucose:glycoprotein glucosyltransferase. J Biol Chem 280:37839–37845
Letavayová L, Vlcková V, Brozmanová J (2006) Selenium: from cancer prevention to DNA damage. Toxicology 227:1–14
Michelland S, Gazzeri S, Brambilla E, Robert-Nicoud M (1999) Comparison of chromosomal imbalances in neuroendocrine and non-small-cell lung carcinomas. Cancer Genet Cytogenet 114:22–30
Nasr MA, Hu YJ, Diamond AM (2004) Allelic loss at the Sep15 locus in breast cancer. Cancer Ther 1:293–298
Neve J, Chamart S, Molle L (1987) Optimization of a direct procedure for the determination of selenium in plasma and erythrocytes using Zeeman effect atomic absorption spectroscopy. In: Brätter P, Schramel P (eds) Trace Elem-Anal Chem Med Biol., vol 2. Walter de Gruyter, Berlin, pp 349–358
Novoselov SV, Calvisi DF, Labunskyy VM, Factor VM, Carlson BA, Fomenko DE, Moustafa ME, Hatfield DL, Gladyshev VN (2005) Selenoprotein deficiency and high levels of selenium compounds can effectively inhibit hepatocarcinogenesis in transgenic mice. Oncogene 24:8003–8011
Patterson EL, Milstrey R, Stokstad ELR (1957) Effect of selenium in preventing exudative diathesis in chicks. Proc Soc Exp Biol Med 95:617
Petersen I, Bujard M, Petersen S, Wolf G, Goeze A, Schwendel A, Langreck H, Gellert K, Reichel M, Just K, du Manoir S, Cremer T, Dietel M, Ried T (1997) Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. Cancer Res 57:2331–2335
Ragnarsson G, Eiriksdottir G, Johannsdottir JT, Jonasson JG, Egilsson V, Ingvarsson S (1999) Loss of heterozygosity at chromosome 1p in different solid human tumours: association with survival. Br J Cancer 79:1468–1474
Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64:527–542
Reid ME, Duffield-Lillico AJ, Garland L, Turnbull BW, Clark LC, Marshall JR (2002) Selenium supplementation and lung cancer incidence: an update of the nutritional prevention of cancer trial. Cancer Epidemiol Biomarkers Prev 11:1285–1291
Reszka E, Wasowicz W, Gromadzinska J, Winnicka R, Szymczak W (2005) Evaluation of selenium, zinc and copper levels related to GST genetic polymorphism in lung cancer patients. Biol Trace Elem Res 22:33–36
Schwarz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary liver degeneration. J Am Chem Soc 79:3292
van den Brandt PA, Goldbohm RA, van ‘t Veer P, Bode P, Dorant E, Hermus RJ, Sturmans F (1993) A prospective cohort study on selenium status and the risk of lung cancer. Cancer Res 53:4860–4865
Vogt TM, Ziegler RG, Patterson BH, Graubard BI (2007) Racial differences in serum selenium concentration: analysis of US population data from the Third National Health and Nutrition Examination Survey. Am J Epidemiol 166:280–288
Whanger PD (2004) Selenium and its relationship to cancer: an update. Br J Nutr 91:11–28
Wu HJ, Lin C, Zha YY, Yang JG, Zhang MC, Zhang XY, Liang X, Fu M, Wu M (2003) Redox reactions of Sep15 and its relationship with tumor development. Ai Zheng 22:119–122
Yu SY, Zhu YJ, Li WG (1997) Protective role of selenium against hepatitis B virus and primary liver cancer in Qidong. Biol Trace Elem Res 56:117–124
Zhuo H, Smith AH, Steinmaus C (2004) Selenium and lung cancer: a quantitative analysis of heterogeneity in the current epidemiological literature. Cancer Epidemiol Biomarkers Prev 13:771–778
Acknowledgments
This study was supported by an internal grant (IMP 1.3/2006) and by the ECNIS Network of Excellence (Contract No. 513943/UE).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jablonska, E., Gromadzinska, J., Sobala, W. et al. Lung cancer risk associated with selenium status is modified in smoking individuals by Sep15 polymorphism. Eur J Nutr 47, 47–54 (2008). https://doi.org/10.1007/s00394-008-0696-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00394-008-0696-9
Keywords
Profiles
- Ewa Jablonska View author profile