Skip to main content
Log in

Neuroendokrin-immune Interaktionen bei rheumatischen Krankheiten

Neuroendocrine immune interactions in rheumatic diseases

  • Neues aus der Forschung
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Klinische Beobachtungen zeigten einen starken Einfluss des neuroendokrinen Systems auf das Immunsystem bei chronisch entzündlichen Erkrankungen: 1. Abschwächung der rheumatoiden Arthritis (RA) während der Schwangerschaft; 2. mehr Frauen als Männer haben eine Autoimmunkrankheit; 3. negativer Einfluss einer ovulationsfördernden Therapie, der Antikonzeptiva und der Hormonersatztherapie; 4. schützender Effekt der Hemiplegie; 5. Einfluss von psychischem Stress auf den Krankheitsverlauf und 6. Bedeutung zirkadianer Rhythmen auf das Krankheitsgeschehen.

Die Wirkung der verschiedenen Hormone und Neurotransmitter wird durch unterschiedliche Faktoren beeinflusst, durch: 1. den Immunstimulus (fremde Antigene oder Autoantigene) und die darauf folgenden antigenspezifischen Immunantworten; 2. die beteiligten Zellen während der verschiedenen Phasen der Krankheit; 3. das Zielorgan mit seiner spezifischen Mikroumgebung; 4. den Zeitpunkt der Hormon- bzw. Neurotransmitterwirkung in Beziehung zum Krankheitsverlauf; 5. die Konzentration von Hormonen und Neurotransmittern; 6. die Variabilität der Expression von Rezeptoren abhängig von der Mikroumgebung und dem Zelltyp und 7. die intrazelluläre und extrazelluläre Metabolisierung der Hormone bzw. Neurotransmitter (entscheidend für wichtige biologisch aktive Metabolite mit sehr unterschiedlichen antiinflammatorischen und proinflammatorischen Eigenschaften).

Der zirkadiane Rhythmus von krankheitsbedingten Symptomen mit einer Spitze in den frühen Morgenstunden bestätigt, dass das neuroendokrine System einen starken Einfluss auf diese chronischen Entzündungskrankheiten hat. Der Einfluss wird durch die zirkadiane Schwankung der Aktivität von hormonellen und neuronalen Achsen übertragen, welche das Gehirn und Entzündungszellen verbinden.

Diese Überlegungen können in Zukunft zu neuen Therapiestrategien bei Entzündungskrankheiten führen.

Abstract

Clinical observations in chronic inflammatory diseases have demonstrated the significant influence of neuroendocrine mechanisms on the immune system: (1) Amelioration of rheumatoid arthritis during pregnancy; (2) preponderance of women versus men with respect to autoimmune diseases; (3) negative effects of ovulation-inducing therapy, oral contraceptives, and hormone replacement therapy; (4) protective effect of hemiplegia; (5) influence of psychological stress on inflammation; and (6) influence of circadian rhythms on inflammatory symptoms.

The effects of different hormones and neurotransmitters on the immune system are influenced by: (1) the immune stimulus (foreign antigens or autoantigens) and subsequent antigen-specific immune responses, (2) the cell types involved during different phases of the disease, (3) the target organ with its specific microenvironment, (4) the timing of hormone or neurotransmitter increase in relation to the disease course, (5) the concentration of hormones and neurotransmitters, (6) the variability in expression of receptors depending on the microenvironment and the cell type, and (7) the intra- and extracellular peripheral metabolism of hormones and neurotransmitters leading to important biologically active metabolites with quite different anti- and proinflammatory functions.

The circadian rhythm of disease-related symptoms with a peak in the early morning hours confirms that the neuroendocrine system has a strong influence on these chronic immune/inflammatory diseases. The influence is transmitted by the circadian fluctuation in the activity of hormonal and neuronal pathways linking the brain to immune cell activation.

These considerations could lead to novel therapeutic strategies for rheumatic diseases in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Baerwald C, Graefe C, Wichert P von, Krause A (1992) Decreased density of beta-adrenergic receptors on peripheral blood mononuclear cells in patients with rheumatoid arthritis. J Rheumatol 19:204–210

    CAS  PubMed  Google Scholar 

  2. Buttgereit F, Doering G, Schaeffler A et al (2008) Efficacy of modified-release versus standard prednisone to reduce duration of morning stiffness of the joints in rheumatoid arthritis (CAPRA-1): a double-blind, randomised controlled trial. Lancet 371:205–214

    Article  CAS  PubMed  Google Scholar 

  3. Carlsten H, Nilsson N, Jonsson R et al (1992) Estrogen accelerates immune complex glomerulonephritis but ameliorates T cell-mediated vasculitis and sialadenitis in autoimmune MRL lpr/lpr mice 86. Cell Immunol 144:190–202

    Article  CAS  PubMed  Google Scholar 

  4. Coderre TJ, Basbaum AI, Levine JD (1989) Neural control of vascular permeability: interactions between primary afferents, mast cells, and sympathetic efferents. J Neurophysiol 62:48–58

    CAS  PubMed  Google Scholar 

  5. Crofford LJ, Kalogeras KT, Mastorakos G et al (1997) Circadian relationships between interleukin (IL)-6 and hypothalamic- pituitary-adrenal axis hormones: failure of IL-6 to cause sustained hypercortisolism in patients with early untreated rheumatoid arthritis. J Clin Endocrinol Metab 82:1279–1283

    Article  CAS  PubMed  Google Scholar 

  6. Cutolo M, Foppiani L, Prete C et al (1999) Hypothalamic-pituitary-adrenocortical axis function in premenopausal women with rheumatoid arthritis not treated with glucocorticoids. J Rheumatol 26:282–288

    CAS  PubMed  Google Scholar 

  7. Cutolo M, Maestroni GJ (2005) The melatonin-cytokine connection in rheumatoid arthritis. Ann Rheum Dis 64:1109–1111

    Article  CAS  PubMed  Google Scholar 

  8. Cutolo M, Straub RH, Bijlsma JW (2007) Neuroendocrine-immune interactions in synovitis. Nat Clin Pract Rheumatol 3:627–634

    Article  CAS  PubMed  Google Scholar 

  9. Cutolo M, Straub RH, Buttgereit F (2008) Circadian rhythms of nocturnal hormones in rheumatoid arthritis: translation from bench to bedside. Ann Rheum Dis 67:905–908

    Article  CAS  PubMed  Google Scholar 

  10. Cutolo M, Straub RH, Chrousos GP (2006) Stress and autoimmunity. Neuroimmunomodulation 13. Karger, Basel

  11. Fassold A, Falk W, Anders S et al (2009) Soluble neuropilin-2, a nerve repellent receptor, is increased in rheumatoid arthritis synovium and aggravates sympathetic fiber repulsion and arthritis. Arthritis Rheum 60:2892–2901

    Article  CAS  PubMed  Google Scholar 

  12. Hench PS (1938) The ameliorating effect of pregnancy on chronic atrophic (infectious, rheumatoid) arthritis, fibrositis, and intermittent hydrarthrosis. Proc Staff Meet Mayo Clin 13:161–167

    Google Scholar 

  13. Hench PS, Slocumb CH, Holley HF, Kendall EC (1950) Effect of cortisone and pituitary adrenocorticotropic hormone (ACTH) on rheumatic diseases. J Am Med Assoc 1327–1335

  14. Huong DL, Wechsler B, Vauthier-Brouzes D et al (2002) Importance of planning ovulation induction therapy in systemic lupus erythematosus and antiphospholipid syndrome: a single center retrospective study of 21 cases and 114 cycles. Semin Arthritis Rheum 32:174–188

    Article  PubMed  Google Scholar 

  15. Kanik KS, Chrousos GP, Schumacher HR et al (2000) Adrenocorticotropin, glucocorticoid, and androgen secretion in patients with new onset synovitis/rheumatoid arthritis: relations with indices of inflammation. J Clin Endocrinol Metab 85:1461–1466

    Article  CAS  PubMed  Google Scholar 

  16. Kees MG, Pongratz G, Kees F et al (2003) Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen. J Neuroimmunol 145:77–85

    Article  CAS  PubMed  Google Scholar 

  17. Keyszer G, Langer T, Kornhuber M et al (2004) Neurovascular mechanisms as a possible cause of remission of rheumatoid arthritis in hemiparetic limbs. Ann Rheum Dis 63:1349–1351

    Article  CAS  PubMed  Google Scholar 

  18. Labrie F (1991) Intracrinology. Mol Cell Endocrinol 78:C113–C118

    Article  CAS  PubMed  Google Scholar 

  19. Nielen MM, Schaardenburg D van, Reesink HW et al (2004) Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum 50:380–386

    Article  PubMed  Google Scholar 

  20. Rantapää-Dahlqvist S, Jong BA de, Berglin E et al (2003) Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 48:2741–2749

    Article  PubMed  Google Scholar 

  21. Saldanha C, Tougas G, Grace E (1986) Evidence for anti-inflammatory effect of normal circulating plasma cortisol. Clin Exp Rheumatol 4:365–366

    CAS  PubMed  Google Scholar 

  22. Schaible HG, Del Rosso A, Matucci-Cerinic M (2005) Neurogenic aspects of inflammation. Rheum Dis Clin North Am 31:77–101, ix

    Article  PubMed  Google Scholar 

  23. Schaible HG, Richter F, Ebersberger A et al (2009) Joint pain. Exp Brain Res 196:153–162

    Article  PubMed  Google Scholar 

  24. Schmidt M, Hartung R, Capellino S et al (2009) Estrone/17beta-estradiol conversion to, and tumor necrosis factor inhibition by, estrogen metabolites in synovial cells of patients with rheumatoid arthritis and patients with osteoarthritis. Arthritis Rheum 60:2913–2922

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt M, Weidler C, Naumann H et al (2005) Reduced capacity for the reactivation of glucocorticoids in rheumatoid arthritis synovial cells: Possible role of the sympathetic nervous system? Arthritis Rheum 52:1711–1720

    Article  CAS  PubMed  Google Scholar 

  26. Stein C, Schafer M, Machelska H (2003) Attacking pain at its source: new perspectives on opioids. Nat Med 9:1003–1008

    Article  CAS  PubMed  Google Scholar 

  27. Sternberg EM, Young WS, Bernardini R et al (1989) A central nervous system defect in biosynthesis of corticotropin-releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. Proc Natl Acad Sci U S A 86:4771–4775

    Article  CAS  PubMed  Google Scholar 

  28. Straub RH (2007) The complex role of estrogens in inflammation. Endocr Rev 28:521–574

    Article  CAS  PubMed  Google Scholar 

  29. Straub RH, Besedovsky HO (2003) Integrated evolutionary, immunological, and neuroendocrine framework for the pathogenesis of chronic disabling inflammatory diseases. FASEB J 17:2176–2183

    Article  CAS  PubMed  Google Scholar 

  30. Straub RH, Besedovsky HO, Del Rey A (2007) Why are there analogous disease mechanisms in chronic inflammatory diseases? Wien Klin Wochenschr 119:444–454

    Article  CAS  PubMed  Google Scholar 

  31. Straub RH, Cutolo M (2007) Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum 56:399–408

    Article  PubMed  Google Scholar 

  32. Straub RH, Grum F, Strauch UG et al (2008) Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut 57:911–921

    Article  CAS  PubMed  Google Scholar 

  33. Straub RH, Paimela L, Peltomaa R et al (2002) Inadequately low serum levels of steroid hormones in relation to IL-6 and TNF in untreated patients with early rheumatoid arthritis and reactive arthritis. Arthritis Rheum 46:654–662

    Article  CAS  PubMed  Google Scholar 

  34. Tsigos C, Papanicolaou DA, Defensor R et al (1997) Dose effects of recombinant human interleukin-6 on pituitary hormone secretion and energy expenditure. Neuroendocrinology 66:54–62

    Article  CAS  PubMed  Google Scholar 

  35. Walker SE, Jacobson JD (2000) Roles of prolactin and gonadotropin-releasing hormone in rheumatic diseases. Rheum Dis Clin North Am 26:713–736

    Article  CAS  PubMed  Google Scholar 

  36. Weidler C, Holzer C, Harbuz M et al (2005) Low density of sympathetic nerve fibres and increased density of brain derived neurotrophic factor positive cells in RA synovium. Ann Rheum Dis 64:13–20

    Article  CAS  PubMed  Google Scholar 

  37. Weidler C, Struharova S, Schmidt M et al (2005) Tumor necrosis factor inhibits conversion of dehydroepiandrosterone sulfate (DHEAS) to DHEA in rheumatoid arthritis synovial cells: A prerequisite for local androgen deficiency. Arthritis Rheum 52:1721–1729

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Rainer H. Straub erhielt im Rahmen von Beratungsgesprächen Honorare von Firma Merck Serono und Nitec Pharma. Die Studien der Gruppe von Rainer H. Straub wurden von der DFG und dem BMBF unterstützt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.H. Straub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straub, R., Fassold, A. Neuroendokrin-immune Interaktionen bei rheumatischen Krankheiten. Z. Rheumatol. 69, 340–348 (2010). https://doi.org/10.1007/s00393-010-0637-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-010-0637-x

Schlüsselwörter

Keywords

Navigation