Skip to main content
Log in

Which congestion presentation pattern on the physical findings is associated with future adverse events? A cluster analysis in the multicenter acute heart failure registry

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Clinical congestion is the most frequent reason for hospital admission in patients with acute heart failure (AHF). However, few studies have investigated the patterns and prognostic implication of the physical congestion using unbiased and robust statistical methods.

Methods

A hierarchical agglomerative clustering analysis was performed in the multicenter Japanese AHF registry (N = 3151) with the distance calculated by Jaccard's distance for jugular vein distention (JVD), leg edema, S3, crackles, and orthopnea. The primary outcome was a composite of cardiac death and heart failure readmission within 1-year.

Results

At the time of admission, the median number of prevalent congestive signs was 2. We identified three phenogroups: ‘no physical congestions’ (N = 251); ‘congestion without JVD’ (N = 1415); and ‘congestion with JVD’ (N = 1495). Patients in ‘no physical congestion’ were the youngest (median 75 [62, 83] years) with the lowest systolic blood pressure (122 [106, 142] mmHg). Patients in ‘congestion without JVD’, and ‘congestion with JVD’ were similar in terms of age (77 [67, 84] vs. 78 [69, 84] years) and systolic blood pressure (138 [118, 160] vs. 137 [118, 158] mmHg). While 30-day mortality was similar (4.0%, 3.7%, and 4.3% in ‘no physical congestion,’ ‘congestion without JVD,’ and ‘congestion with JVD’, respectively), the patients in ‘congestion with JVD’ were at the highest risk for the primary outcome (adjusted hazard ratio 1.79, 95% CI 1.26–2.55 when ‘no physical congestion’ was a reference).

Conclusions

Our clustering analysis demonstrated that congestion signs, particularly JVD, allowed identification of AHF phenogroups with distinct clinical characteristics and long-term outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Virani SS, Alonso A, Aparicio HJ et al (2021) Heart disease and stroke statistics—2021 update. Circulation 143:e254–e743. https://doi.org/10.1161/CIR.0000000000000950

    Article  PubMed  Google Scholar 

  2. McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42:3599–3726. https://doi.org/10.1093/eurheartj/ehab368

    Article  CAS  PubMed  Google Scholar 

  3. Shiraishi Y, Kohsaka S, Sato N et al (2018) 9-Year trend in the management of acute heart failure in Japan: a report from the national consortium of acute heart failure registries. J Am Heart Assoc 7:e008687. https://doi.org/10.1161/JAHA.118.008687

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mullens W, Damman K, Harjola V-P et al (2019) The use of diuretics in heart failure with congestion - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 21:137–155. https://doi.org/10.1002/ejhf.1369

    Article  PubMed  Google Scholar 

  5. Cooper LB, Lippmann SJ, DiBello JR et al (2019) The burden of congestion in patients hospitalized with acute decompensated heart failure. Am J Cardiol 124:545–553. https://doi.org/10.1016/j.amjcard.2019.05.030

    Article  PubMed  Google Scholar 

  6. Lindenfeld J, Zile MR, Desai AS et al (2021) Haemodynamic-guided management of heart failure (GUIDE-HF): a randomised controlled trial. Lancet 398:991–1001. https://doi.org/10.1016/S0140-6736(21)01754-2

    Article  CAS  PubMed  Google Scholar 

  7. Stevenson LW, Perloff JK (1989) The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA 261:884–888

    Article  CAS  PubMed  Google Scholar 

  8. Drazner MH, Hellkamp AS, Leier CV et al (2008) Value of clinician assessment of hemodynamics in advanced heart failure: the ESCAPE trial. Circ Heart Fail 1:170–177. https://doi.org/10.1161/CIRCHEARTFAILURE.108.769778

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang CS, FitzGerald JM, Schulzer M et al (2005) Does this dyspneic patient in the emergency department have congestive heart failure? JAMA 294:1944–1956. https://doi.org/10.1001/jama.294.15.1944

    Article  CAS  PubMed  Google Scholar 

  10. Nohria A, Lewis E, Stevenson LW (2002) Medical management of advanced heart failure. JAMA 287:628–640. https://doi.org/10.1001/jama.287.5.628

    Article  PubMed  Google Scholar 

  11. Chioncel O, Mebazaa A, Harjola V-P et al (2017) Clinical phenotypes and outcome of patients hospitalized for acute heart failure: the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 19:1242–1254. https://doi.org/10.1002/ejhf.890

    Article  PubMed  Google Scholar 

  12. Shoaib A, Farag M, Nolan J et al (2019) Mode of presentation and mortality amongst patients hospitalized with heart failure? A report from the First Euro Heart Failure Survey. Clin Res Cardiol 108:510–519. https://doi.org/10.1007/s00392-018-1380-6

    Article  PubMed  Google Scholar 

  13. Shoaib A, Mamas MA, Ahmad QS et al (2019) Characteristics and outcome of acute heart failure patients according to the severity of peripheral oedema. Int J Cardiol 285:40–46. https://doi.org/10.1016/j.ijcard.2019.03.020

    Article  PubMed  Google Scholar 

  14. Segar MW, Patel KV, Ayers C et al (2020) Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis. Eur J Heart Fail 22:148–158. https://doi.org/10.1002/ejhf.1621

    Article  CAS  PubMed  Google Scholar 

  15. Verdonschot JAJ, Merlo M, Dominguez F et al (2021) Phenotypic clustering of dilated cardiomyopathy patients highlights important pathophysiological differences. Eur Heart J 42:162–174. https://doi.org/10.1093/eurheartj/ehaa841

    Article  CAS  PubMed  Google Scholar 

  16. Karwath A, Bunting KV, Gill SK et al (2021) Redefining β-blocker response in heart failure patients with sinus rhythm and atrial fibrillation: a machine learning cluster analysis. Lancet. https://doi.org/10.1016/S0140-6736(21)01638-X

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yagi R, Takei M, Kohsaka S et al (2021) Phenomapping in patients experiencing worsening renal function during hospitalization for acute heart failure. ESC Heart Fail. https://doi.org/10.1002/ehf2.13598

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tsikliras NC, Georgianos PI, Vaios V et al (2021) Physical examination for the detection of hypervolemia among patients on chronic dialysis: a diagnostic-test study. Hemodial Int. https://doi.org/10.1111/hdi.12920

    Article  PubMed  Google Scholar 

  19. Kasahara S, Sakata Y, Nochioka K et al (2019) Conversion formula from B-type natriuretic peptide to N-terminal proBNP values in patients with cardiovascular diseases. Int J Cardiol 280:184–189. https://doi.org/10.1016/j.ijcard.2018.12.069

    Article  PubMed  Google Scholar 

  20. Ng SK, Tawiah R, Sawyer M, Scuffham P (2018) Patterns of multimorbid health conditions: a systematic review of analytical methods and comparison analysis. Int J Epidemiol 47:1687–1704. https://doi.org/10.1093/ije/dyy134

    Article  PubMed  Google Scholar 

  21. Coombes CE, Liu X, Abrams ZB et al (2021) Simulation-derived best practices for clustering clinical data. J Biomed Inform 118:103788. https://doi.org/10.1016/j.jbi.2021.103788

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lai FTT, Beeler PE, Yip BHK et al (2021) Comparing multimorbidity patterns among discharged middle-aged and older inpatients between Hong Kong and Zurich: a hierarchical agglomerative clustering analysis of routine hospital records. Front Med 8:651925. https://doi.org/10.3389/fmed.2021.651925

    Article  Google Scholar 

  23. R Core Team (2021) R: A Language and Environment for Statistical Computing

  24. Shoaib A, Waleed M, Khan S et al (2014) Breathlessness at rest is not the dominant presentation of patients admitted with heart failure. Eur J Heart Fail 16:1283–1291. https://doi.org/10.1002/ejhf.153

    Article  PubMed  Google Scholar 

  25. Thibodeau JT, Drazner MH (2018) The role of the clinical examination in patients with heart failure. JACC Heart Fail 6:543–551. https://doi.org/10.1016/j.jchf.2018.04.005

    Article  PubMed  Google Scholar 

  26. Gheorghiade M, Follath F, Ponikowski P et al (2010) Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail 12:423–433. https://doi.org/10.1093/eurjhf/hfq045

    Article  PubMed  Google Scholar 

  27. Drazner MH, Rame JE, Stevenson LW, Dries DL (2001) Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med 345:574–581. https://doi.org/10.1056/NEJMoa010641

    Article  CAS  PubMed  Google Scholar 

  28. Pellicori P, Kallvikbacka-Bennett A, Dierckx R et al (2015) Prognostic significance of ultrasound-assessed jugular vein distensibility in heart failure. Heart 101:1149–1158. https://doi.org/10.1136/heartjnl-2015-307558

    Article  CAS  PubMed  Google Scholar 

  29. Pellicori P, Clark AL, Kallvikbacka-Bennett A et al (2017) Non-invasive measurement of right atrial pressure by near-infrared spectroscopy: preliminary experience. A report from the SICA-HF study. Eur J Heart Fail 19:883–892. https://doi.org/10.1002/ejhf.825

    Article  CAS  PubMed  Google Scholar 

  30. Pham DD, Drazner MH, Ayers CR et al (2021) Identifying discordance of right- and left-ventricular filling pressures in patients with heart failure by the clinical examination. Circ Heart Fail 14:e008779. https://doi.org/10.1161/CIRCHEARTFAILURE.121.008779

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pellicori P, Carubelli V, Zhang J et al (2013) IVC diameter in patients with chronic heart failure: relationships and prognostic significance. JACC Cardiovasc Imaging 6:16–28. https://doi.org/10.1016/j.jcmg.2012.08.012

    Article  PubMed  Google Scholar 

  32. Drazner MH, Stevenson LW (2019) Relief and prevention of congestion in heart failure enhance quality and length of life. Circulation 140:1380–1382. https://doi.org/10.1161/CIRCULATIONAHA.119.042660

    Article  PubMed  Google Scholar 

  33. Negi S, Sawano M, Kohsaka S et al (2014) Prognostic implication of physical signs of congestion in acute heart failure patients and its association with steady-state biomarker levels. PLoS One 9:e96325. https://doi.org/10.1371/journal.pone.0096325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Simonavičius J, Sanders van-Wijk S, Rickenbacher P et al (2019) Prognostic significance of longitudinal clinical congestion pattern in chronic heart failure: insights from TIME-CHF Trial. Am J Med 132:e679–e692. https://doi.org/10.1016/j.amjmed.2019.04.010

    Article  PubMed  Google Scholar 

  35. Abraham WT, Adamson PB, Bourge RC et al (2011) Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377:658–666. https://doi.org/10.1016/S0140-6736(11)60101-3

    Article  PubMed  Google Scholar 

  36. Jering K, Claggett B, Redfield MM et al (2021) Burden of heart failure signs and symptoms, prognosis, and response to therapy: the PARAGON-HF trial. JACC Heart Fail 9:386–397. https://doi.org/10.1016/j.jchf.2021.01.011

    Article  PubMed  Google Scholar 

  37. Sundaram V, Nagai T, Chiang C-E et al (2022) Hospitalization for heart failure in the United States, UK, Taiwan, and Japan: an international comparison of administrative health records on 413,385 individual patients. J Card Fail 28:353–366. https://doi.org/10.1016/j.cardfail.2021.08.024

    Article  PubMed  Google Scholar 

  38. Nagai T, Sundaram V, Rothnie K et al (2018) Mortality after admission for heart failure in the UK compared with Japan. Open Heart 5:e000811. https://doi.org/10.1136/openhrt-2018-000811

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nagai T, Sundaram V, Shoaib A et al (2018) Validation of U.S. mortality prediction models for hospitalized heart failure in the United Kingdom and Japan. Eur J Heart Fail 20:1179–1190. https://doi.org/10.1002/ejhf.1210

    Article  PubMed  Google Scholar 

  40. Dokainish H, Teo K, Zhu J et al (2017) Global mortality variations in patients with heart failure: results from the International Congestive Heart Failure (INTER-CHF) prospective cohort study. Lancet Glob Health 5:e665–e672. https://doi.org/10.1016/S2214-109X(17)30196-1

    Article  PubMed  Google Scholar 

  41. Akiyama E, Van Aelst LNL, Arrigo M et al (2018) East Asia may have a better 1-year survival following an acute heart failure episode compared with Europe: results from an international observational cohort. Eur J Heart Fail 20:1071–1075. https://doi.org/10.1002/ejhf.1152

    Article  PubMed  Google Scholar 

  42. Sun LY, Kimmoun A, Takagi K et al (2019) Ethnic differences in acute heart failure outcomes in Ontario. Int J Cardiol 291:177–182. https://doi.org/10.1016/j.ijcard.2019.05.043

    Article  PubMed  Google Scholar 

  43. Ide T, Kaku H, Matsushima S et al (2021) Clinical characteristics and outcomes of hospitalized patients with heart failure from the large-scale Japanese Registry Of Acute Decompensated Heart Failure (JROADHF). Circ J 85:1438–1450. https://doi.org/10.1253/circj.CJ-20-0947

    Article  PubMed  Google Scholar 

  44. Bozkurt B, Coats AJ, Tsutsui H et al (2021) Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail. https://doi.org/10.1016/j.cardfail.2021.01.022

    Article  PubMed  Google Scholar 

  45. Selvaraj S, Claggett B, Pozzi A et al (2019) Prognostic implications of congestion on physical examination among contemporary patients with heart failure and reduced ejection fraction: PARADIGM-HF. Circulation 140:1369–1379. https://doi.org/10.1161/CIRCULATIONAHA.119.039920

    Article  CAS  PubMed  Google Scholar 

  46. Cleland JG, Habib F (1996) Assessment and diagnosis of heart failure. J Intern Med 239:317–325. https://doi.org/10.1046/j.1365-2796.1996.462801000.x

    Article  CAS  PubMed  Google Scholar 

  47. Deol GR, Collett N, Ashby A, Schmidt GA (2011) Ultrasound accurately reflects the jugular venous examination but underestimates central venous pressure. Chest 139:95–100. https://doi.org/10.1378/chest.10-1301

    Article  PubMed  Google Scholar 

  48. Wang L, Harrison J, Dranow E et al (2022) Accuracy of ultrasound jugular venous pressure height in predicting central venous congestion. Ann Intern Med 175:344–351. https://doi.org/10.7326/M21-2781

    Article  PubMed  Google Scholar 

  49. Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17:107–145. https://doi.org/10.1023/A:1012801612483

    Article  Google Scholar 

  50. Shiraishi Y, Nagai T, Kohsaka S et al (2018) Outcome of hospitalised heart failure in Japan and the United Kingdom stratified by plasma N-terminal pro-B-type natriuretic peptide. Clin Res Cardiol 107:1103–1110. https://doi.org/10.1007/s00392-018-1283-6

    Article  CAS  PubMed  Google Scholar 

  51. Rajadurai J, Tse H-F, Wang C-H et al (2017) Understanding the epidemiology of heart failure to improve management practices: an Asia-Pacific perspective. J Card Fail 23:327–339. https://doi.org/10.1016/j.cardfail.2017.01.004

    Article  PubMed  Google Scholar 

  52. Shiraishi Y, Kohsaka S, Katsuki T et al (2020) Benefit and harm of intravenous vasodilators across the clinical profile spectrum in acute cardiogenic pulmonary oedema patients. Eur Heart J Acute Cardiovasc Care 9:448–458. https://doi.org/10.1177/2048872619891075

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by Aid for Young Scientists [Japan Society for the Promotion of Science KAKENHI, #18K15860 (Y.S.), #23K15168 (Y.S.), #20K08408 (T.K.)], Grant-in-Aid for Scientific Research (C) [#23591062 (T.Y.), #26461088 (T.Y.), #16K09469 (Y.N.), #17K09526 (T.K.), #18K08056 (T.Y.), #20K08408 (T.K.), #21K08142 (T.Y.)], Grant-in-Aid for Scientific Research (B) [#16H05215 (S.K.), #20H03915 (S.K.)], Health Labour Sciences Research Grant [#14528506 (S.K.)], the Sakakibara Clinical Research Grant for the Promotion of Sciences [T.Y. 2012-2020], the Japan Agency for Medical Research and Development [201439013C (S.K.)], and the Grant-in-Aid for Clinical Research from the Japanese Circulation Society [Y.S. 2019].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, NN, SK, and YS; methodology, NN, SK, and YS; software, NN; validation, NN, and SK; formal analysis, NN; investigation, NN, YS, SK; resources, YS and SK; data curation, YS and SK; writing—original draft preparation, NN; writing—review and editing, NN, SK, YS, MT, TK, SN, YN, MS, MS, NI, TI, IU, KF, and TY; visualization, NN and YS; supervision, YS and SK; project administration, NN, YS and SK; funding acquisition, YS and SK. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shun Kohsaka.

Ethics declarations

Conflict of interest

S.K. received an unrestricted research grant for the Department of Cardiology, Keio University School of Medicine, from Novartis Pharma Co., Ltd and honoraria from Bayer, Bristol Myers Squibb and Pfizer. Y.S. is affiliated with an endowed department by Nippon Shinyaku Co., Ltd., Medtronic Japan Co., Ltd., and BIOTRONIK JAPAN Inc., and received research grants from the SECOM Science and Technology Foundation and the Uehara Memorial Foundation and honoraria from Otsuka Pharmaceuticals Co., Ltd., and Ono Pharmaceuticals Co., Ltd. N.I. received an unrestricted research grant for the Department of Cardiology, Keio University School of Medicine from Bristol Myer Squibb. Other authors have no conflicts of interest to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 518 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niimi, N., Kohsaka, S., Shiraishi, Y. et al. Which congestion presentation pattern on the physical findings is associated with future adverse events? A cluster analysis in the multicenter acute heart failure registry. Clin Res Cardiol 112, 1108–1118 (2023). https://doi.org/10.1007/s00392-023-02201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-023-02201-8

Keywords

Navigation