Skip to main content
Log in

Robotic-assisted rehabilitation of proximal humerus fractures in virtual environments

A pilot study

Roboterassistierte Rehabilitation proximaler Humerusfrakturen im virtuellen Raum

Eine Pilotstudie

  • Beiträge zum Themenschwerpunkt
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

Background and objective

With the growing incidence of upper arm fractures among older people, innovative treatment strategies will be needed in geriatric rehabilitation. A pilot study was designed to test the feasibility of robotic-assisted rehabilitation after proximal humeral fractures.

Patients and methods

Within a sample of 8 older patients (79.5 ± 6.12 years), functional ability, quality and range of movement, self-rated impairment, quality of life, and user satisfaction were measured in an observational pre-/postdesign. During rehabilitation robotic-assisted training was applied.

Results

Training motivation and acceptance were high in this sample, showing improvements in functional ability (p = 0.03), quality of movement (p = 0.02), range of motion, self-evaluation (p = 0.01), and quality of life.

Conclusion

This pilot study highlights the possible implementation of robotic-assisted rehabilitation after proximal humeral fractures in geriatric rehabilitation. The measurement and training protocol was suitable to document progress in rehabilitation.

Zusammenfassung

Hintergrund und Zielsetzung

Die steigende Inzidenzrate von Oberarmfrakturen im Alter verlangt nach innovativen Behandlungsstrategien in der geriatrischen Rehabilitation. In einer Pilotstudie sollte die Machbarkeit eines roboterassistierten Trainings bei Patienten mit proximalen Humerusfrakturen untersucht werden.

Patienten und Methodik

Bei 8 älteren Patienten (79,5 ± 6,12 Jahre) wurde in einer Beobachtungsstudie Funktionalität, Bewegungsqualität und Beweglichkeit, subjektive Funktionseinschränkung, Lebensqualität und die Anwenderzufriedenheit vor und nach der Rehabilitation untersucht. Während der Rehabilitation wurde ein roboterassistiertes Training durchgeführt.

Ergebnisse

Die Trainingsmotivation und Akzeptanz unter den Patienten waren hoch. Beobachtet wurden Verbesserungen der Armfunktion (p = 0,03), Bewegungsqualität (p = 0,02), Beweglichkeit des betroffenen Arms, Selbsteinschätzung (p = 0,01) und der Lebensqualität.

Schlussfolgerungen

Die Ergebnisse der Pilotstudie unterstützen die Implementation des roboterassistiertes Training nach proximalen Humerusfrakturen in der geriatrischen Rehabilitation. Das gewählte Mess- und Trainingsprotokoll war geeignet, um Veränderungen zu dokumentieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lanting B et al (2008) Proximal humeral fractures: a systematic review of treatment modalities. J Shoulder Elbow Surg 17(1):42–54

    Article  PubMed  Google Scholar 

  2. Kostler W, Strohm PC, Sudkamp NP (2002) New techniques for bone synthesis on the humerus. Chirurg 73(10):969–977

    Article  PubMed  CAS  Google Scholar 

  3. Palvanen M et al (2006) Update in the epidemiology of proximal humeral fractures. Clin Orthop Relat Res 442:87–92

    Article  PubMed  Google Scholar 

  4. Resch H (2003) Fractures of the humeral head. Unfallchirurg 106(8):602–617

    Article  PubMed  CAS  Google Scholar 

  5. Kutscha-Lissberg F et al (2000) Fracture management in the aged. Orthopade 29(4):274–280

    PubMed  CAS  Google Scholar 

  6. Handoll HH, Ollivere BJ (2010) Interventions for treating proximal humeral fractures in adults. Cochrane Database Syst Rev 12:CD000434

    PubMed  Google Scholar 

  7. Bertoft ES, Lundh I, Ringqvist I (1984) Physiotherapy after fracture of the proximal end of the humerus. Comparison between two methods. Scand J Rehabil Med 16(1):11–16

    PubMed  CAS  Google Scholar 

  8. Liepert J et al (1998) Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci Lett 250(1):5–8

    Article  PubMed  CAS  Google Scholar 

  9. You SH et al (2005) Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke 36(6):1166–1171

    Article  PubMed  Google Scholar 

  10. Brochard S et al (2010) What’s new in new technologies for upper extremity rehabilitation? Curr Opin Neurol 23(6):683–687

    Article  PubMed  Google Scholar 

  11. Prange GB et al (2006) Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 43(2):171–184

    Article  PubMed  Google Scholar 

  12. Gijbels D et al (2011) The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. J Neuroeng Rehabil 8:5

    Article  PubMed  Google Scholar 

  13. Lo AC et al (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 362(19):1772–1183

    Article  PubMed  CAS  Google Scholar 

  14. Nef T et al (2009) Effects of arm training with the robotic device ARMin I in chronic stroke: three single cases. Neurodegener Dis 6(5–6):240–251

    Google Scholar 

  15. Reinkensmeyer DJ, Patton JL (2009) Can robots help the learning of skilled actions? Exerc Sport Sci Rev 37(1):43–51

    Article  PubMed  Google Scholar 

  16. Prange GB et al (2009) Influence of gravity compensation on muscle activation patterns during different temporal phases of arm movements of stroke patients. Neurorehabil Neural Repair 23(5):478–485

    Article  PubMed  CAS  Google Scholar 

  17. Wolf SL et al (2001) Assessing wolf motor function test as outcome measure for research in patients after stroke. Stroke 32(7):1635–1639

    Article  PubMed  CAS  Google Scholar 

  18. Bohannon RW, Schaubert KL (2005) Test-retest reliability of grip-strength measures obtained over a 12-week interval from community-dwelling elders. J Hand Ther 18(4):426–427, quiz

    Article  PubMed  Google Scholar 

  19. Ryf C, Weymann A (1999) Range of motion – AO neutral-0 method: measurement and documentation. Thieme, Stuttgart, ISBN 978-3-13-116791-0

  20. Germann G et al (2003) Standardisation and validation of the German version 2.0 of the Disability of Arm, Shoulder, Hand (DASH) questionnaire. Unfallchirurg 106(1):13–19

    Article  PubMed  CAS  Google Scholar 

  21. Dixon D et al (2008) The Disabilities of the Arm, Shoulder and Hand Questionnaire (DASH) can measure the impairment, activity limitations and participation restriction constructs from the International Classification of Functioning, Disability and Health (ICF). BMC Musculoskelet Disord 9:114

    Article  PubMed  Google Scholar 

  22. EuroQol-Group (1990) EuroQol—a new facility for the measurement of health-related quality of life. The Euro Qol Group. Health Policy 16(3):199–208

    Article  Google Scholar 

  23. Greiner W et al (2005) Validating the EQ-5D with time trade off for the German population. Eur J Health Econ 6(2):124–130

    Article  PubMed  CAS  Google Scholar 

  24. Wade DT (1992) Measurement in neurological rehabilitation. Curr Opin Neurol Neurosurg 5(5):682–686

    PubMed  CAS  Google Scholar 

  25. Kwakkel G, Kollen BJ, Krebs HI (2008) Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 22(2):111–121

    PubMed  Google Scholar 

  26. Guralnik JM, Winograd CH (1994) Physical performance measures in the assessment of older persons. Aging (Milano) 6(5):303–305

    Google Scholar 

  27. Bohannon RW et al (2007) Average grip strength: a meta-analysis of data obtained with a Jamar dynamometer from individuals 75 years or more of age. J Geriatr Phys Ther 30(1):28–30

    Article  PubMed  Google Scholar 

  28. Bohannon RW (1998) Hand-grip dynamometry provides a valid indication of upper extremity strength impairment in home care patients. J Hand Ther 11(4):258–260

    PubMed  CAS  Google Scholar 

  29. Mills KL (1974) Severe injuries of the upper end of the humerus. Injury 6(1):13–21

    Article  PubMed  CAS  Google Scholar 

  30. Youdas JW et al (1994) Reliability of goniometric measurements of active arm elevation in the scapular plane obtained in a clinical setting. Arch Phys Med Rehabil 75(10):1137–1144

    Article  PubMed  CAS  Google Scholar 

  31. Triffitt PD (1998) The relationship between motion of the shoulder and the stated ability to perform activities of daily living. J Bone Joint Surg Am 80(1):41–46

    PubMed  CAS  Google Scholar 

  32. Hanson B et al (2009) Functional outcomes after nonoperative management of fractures of the proximal humerus. J Shoulder Elbow Surg 18(4):612–621

    Article  PubMed  Google Scholar 

  33. Olerud P et al (2010) Quality of life and functional outcome after a 2-part proximal humeral fracture: a prospective cohort study on 50 patients treated with a locking plate. J Shoulder Elbow Surg 19(6):814–822

    Article  PubMed  Google Scholar 

  34. Coley B et al (2008) Estimating dominant upper-limb segments during daily activity. Gait Posture 27(3):368–375

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Robert Bosch Stiftung (Kompetenzzentrum Geriatrie), Stuttgart, Germany. The robotic system was funded by the “Verein Freunde und Förderer des Robert-Bosch-Krankenhauses e. V.”

Conflict of interest

The corresponding author states the following: Anna Stähler was partly supported by Hocoma GmbH. The sponsors had no influence on the design and conduction of the study, or on the writing of the manuscript and the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Schwickert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwickert, L., Klenk, J., Stähler, A. et al. Robotic-assisted rehabilitation of proximal humerus fractures in virtual environments. Z Gerontol Geriat 44, 387–392 (2011). https://doi.org/10.1007/s00391-011-0258-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-011-0258-2

Keywords

Schlüsselwörter

Navigation