Skip to main content

Advertisement

Log in

The effects of tacrolimus on colonic anastomotic healing in rats

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Aim

The aim of this experimental study is to investigate the effects of tacrolimus on colonic anastomotic healing after subcutaneous administration.

Materials and methods

Forty Albino–Wistar male rats were divided into two groups, with two equal subgroups each. They all underwent colonic resection followed by a single-layer, inverted colon anastomosis and were injected subcutaneously with either 1 ml of 0.9% NaCl solution or tacrolimus (0.1 mg/kg body weight) depending on their group. Half of the rats were sacrificed on the fourth postoperative day, while the remaining half were sacrificed on the eighth postoperative day. Macroscopical and histological assessment was performed, while anastomotic bursting pressures and the tissue concentrations in hydroxyproline and collagenase I were evaluated.

Results

On the fourth postoperative day, the bursting pressures (217.00 ± 11.12, p < 0.001), the fibroblast activity (2.80 ± 0.42, p = 0.022), the neoangiogenesis (2.10 ± 0.32, p = 0.007) and the tissue hydroxyproline concentration (254.23 ± 67.10, p = 0.001) were significantly higher in the tacrolimus-treated animals. Furthermore, tacrolimus significantly decreased the inflammatory cell infiltration (1.50 ± 0.53, p < 0.001) and the tissue collagenase I concentration (4.16 ± 0.76, p = 0.002).

On the eighth day, the bursting pressure (264.00 ± 32.61, p < 0.001) and the hydroxyproline tissue concentration (331.04 ± 55.56, p = 0.002) were significantly higher in the tacrolimus subgroups. The inflammatory cell infiltration (1.20 ± 0.42, p < 0.001) and the collagenase I concentration (1.61 ± 0.83, p < 0.001) were significantly lower. In addition, the adhesion formation score was significantly lower (1.20 ± 0.92, p = 0.065).

Conclusion

Tacrolimus, when injected subcutaneously, promotes healing of colonic anastomoses in rats. It impairs not only inflammatory response but also collagen degradation, resulting to increased anastomotic strength on the fourth as well as on the eighth postoperative day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kanellos I, Blouhos K, Demetriades H, Pramateftakis MG, Mantzoros I, Zacharakis E, Betsis D (2004) The failed intraperitoneal colon anastomosis after colon resection. Tech Coloproctol 8:53–55

    Article  Google Scholar 

  2. Kanellos I (2004) Progress in the treatment of colorectal cancer. Tech Coloproctol 8:1–2

    Article  Google Scholar 

  3. Pramateftakis MG, Vrakas G, Hatzigianni P, Tsachalis T, Matzoros I, Christoforidis E, Raptis D, Roidos G, Lazaridis C (2010) The handsewn anastomosis after colon resection due to colonic cancer. Tech Coloproctol 14:57–59

    Article  Google Scholar 

  4. Ho YH, Ashour MA (2010) Techniques for colorectal anastomosis. World J Gastroenterol 16:1610–1621

    Article  PubMed  Google Scholar 

  5. Schrock TR, Deveney CV, Dunphy JE (1973) Factor contributing to leakage of colonic anastomoses. Ann Surg 177:513–518

    Article  PubMed  CAS  Google Scholar 

  6. Kanellos I, Angelopoulos S, Tsachalis T, Pramateftakis MG, Mantzoros I, Betsis D (2004) Anastomotic leakage following anterior resection for rectal cancer. Tech Coloproctol 8:79–81

    Article  Google Scholar 

  7. Hämäläinen M, Lahti A, Moilanen E (2002) Calcineurin inhibitors, cyclosporin A and tacrolimus inhibit expression of inducible nitric oxide synthase in colon epithelial and macrophage cell lines. Eur J Pharmacol 448:239–244

    Article  PubMed  Google Scholar 

  8. Thomson AW, Bonham CA, Zeevi A (1995) Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther Drug Monit 17:584–591

    Article  PubMed  CAS  Google Scholar 

  9. Miyagi M, Muramatsu M, Ishikawa Y, Ishii T, Sakai K, Arai K, Aikawa A, Ohara T, Mizuiri M, Hirayama N, Hasegawa A (2002) Comparison of the therapeutic effects between CsA and FK506 on chronic renal allograft injury and TGF-beta expression. Transplant Proc 34:1589–1590

    Article  PubMed  CAS  Google Scholar 

  10. Kiyama T, Tajiri T, Tokunaga A, Yoshiyuki T, Barbul A (2002) Tacrolimus enhances colon anastomotic healing in rats. Wound Repair Regen 10:308–313

    Article  PubMed  Google Scholar 

  11. Van der Ham AC, Kort WJ, Weijma IM, van den Ingh HF, Jeekel H (1992) Effect of antibiotics in fibrin sealant on healing colonic anastomoses in the rat. Br J Surg 79:525–528

    Article  PubMed  Google Scholar 

  12. Ozel SK, Kazez A, Akpolat N (2006) Does a fibrin–collagen patch support early anastomotic healing in the colon? An experimental study. Tech Coloproctol 10:233–236

    Article  PubMed  CAS  Google Scholar 

  13. Phillips JD, Kim CS, Fonkalsrud EW, Zeng H, Dindar H (1992) Effects of chronic corticosteroids and vitamin A on the healing of intestinal anastomoses. Am J Surg 163:71–77

    Article  PubMed  CAS  Google Scholar 

  14. Reddy GK, Enweneka CS (1996) A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem 29:225–229

    Article  PubMed  CAS  Google Scholar 

  15. Cohen J (1988) Statistical power analysis for the behavioral sciences. Erlbaum, New Jersey

    Google Scholar 

  16. Faul F, Erdfelder E (1992) GPOWER: a priori, post-hoc and compromise power analyses for MS-DOS [computer program]. Bonn University, Dep. of Psychology, Bonn

  17. Toothaker L (1993) Multiple comparison procedures. Sage, Newbury Park

    Google Scholar 

  18. Mehta C, Patel R (1996) SPSS Exact Tests 7.0 for Windows. SPSS Inc., Chicago

  19. Kanellos D, Pramateftakis MG, Vrakas G, Hatzigianni P, Agelopoulos S, Tsachalis T, Koukouritaki Z, Raptis D, Kanellos I (2010) Laparoscopic right hemicolectomy due to colon cancer. Tech Coloproctol 14:71–72

    Article  Google Scholar 

  20. Merkel S, Hohenberger W, Hermanek P (2010) Intra-operative local tumor cell dissemination in rectal carcinoma surgery: effect of operation principles and neoadjuvant therapy. Chirurg 81:719–727

    Article  PubMed  CAS  Google Scholar 

  21. Kanellos D, Pramateftakis MG, Demetriades H, Zacharakis E, Angelopoulos S, Mantzoros I, Kanellos I, Despoudi K, Zaraboukas T, Koliakos G, Galovatsea K, Lazaridis H (2008) Healing of colonic anastomoses after immediate postoperative intraperitoneal administration of oxaliplatin. Int J Colorectal Dis 23:1185–1191

    Article  PubMed  Google Scholar 

  22. Pramateftakis MG, Kanellos D, Demetriades H, Kanellos I, Mantzoros I, Zacharakis E, Despoudi K, Angelopoulos S, Koliakos G, Zaraboukas T, Betsis D (2007) The effects of irinotecan on the healing of colonic anastomoses in rats. The Open Surgery Journal 1:1–6

    CAS  Google Scholar 

  23. Mantzoros I, Kanellos I, Angelopoulos S, Koliakos G, Pramateftakis MG, Kanellos D, Zacharakis E, Zaraboukas T, Betsis D (2006) The effect of insulin-like growth factor I on healing of colonic anastomoses in cortisone-treated rats. Dis Colon Rectum 49:1431–1438

    Article  PubMed  CAS  Google Scholar 

  24. Ng SC, Arebi N, Kamm MA (2007) Medium-term results of oral tacrolimus treatment in refractory inflammatory bowel disease. Inflamm Bowel Dis 13:129–134

    Article  PubMed  Google Scholar 

  25. Pronio A, Di Filippo A, Narilli P, Mancini B, Caporilli D, Piroli S, Vestri A, Montesani C (2007) Anastomotic dehiscence in colorectal surgery. Analysis of 1290 patients. Chir Ital 59:599–609

    PubMed  Google Scholar 

  26. Demling RH (2009) Nutrition, anabolism, and the wound healing process: an overview. Eplasty 9:9

    Google Scholar 

  27. Alamo JM, Galindo A, Morales S, Daza G, Socas M, Suárez-Artacho G, Suárez-Grau JM, García-Moreno J, Pareja F, Gómez MA (2007) Role of malnutrition in intestinal anastomosis collagenization: an analysis of procollagen (PINP) and carboxyterminal telopeptide (ICTP) by radioimmunoassay. Rev Esp Enferm Dig 99:76–83

    PubMed  CAS  Google Scholar 

  28. Ghosh S, Panaccione R (2010) Anti-adhesion molecule therapy for inflammatory bowel disease. Therap Adv Gastroenterol 3:239–258

    Article  PubMed  CAS  Google Scholar 

  29. Sadek K, Macklon N, Bruce K, Cagampang F, Cheong Y (2011) Hypothesis: role for the circadian clock system and sleep in the pathogenesis of adhesions and chronic pelvic pain? Med Hypotheses 76:453–456

    Article  PubMed  Google Scholar 

  30. Wasserberg N, Nunoo-Mensah JW, Ruiz P, Tzakis AG (2007) The effect of immunosuppression on peritoneal adhesions formation after small bowel transplantation in rats. J Surg Res 141:294–298

    Article  PubMed  CAS  Google Scholar 

  31. Brunner G (2003) Theme issue: wound healing mechanisms. Thromb Haemost 90:976–977

    PubMed  CAS  Google Scholar 

  32. Otrock ZK, Mahfouz RA, Makarem JA, Shamseddine AI (2007) Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis 39:212–220

    Article  PubMed  CAS  Google Scholar 

  33. Wang XJ, Dong Z, Zhong XH, Shi RZ, Huang SH, Lou Y, Li QP (2008) Transforming growth factor-beta1 enhanced vascular endothelial growth factor synthesis in mesenchymal stem cells. Biochem Biophys Res Commun 365:548–554

    Article  PubMed  CAS  Google Scholar 

  34. Tuxhorn JA, McAlhany SJ, Yang F (2002) Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res 62:6021–6025

    PubMed  CAS  Google Scholar 

  35. Jung H, Kim HH, Lee DH, Hwang YS, Yang HC, Park JC (2011) Transforming growth factor-beta 1 in adipose derived stem cells conditioned medium is a dominant paracrine mediator determines hyaluronic acid and collagen expression profile. Cytotechnology 63:57–66

    Article  PubMed  Google Scholar 

  36. Kiyama T, Onda M, Tokunaga A, Efron DT, Barbul A (2001) Effect of matrix metalloproteinase inhibition on colonic anastomotic healing in rats. J Gastrointest Surg 5:303–311

    Article  PubMed  CAS  Google Scholar 

  37. Witte MB, Thornton FJ, Kiyama T, Efron DT, Schulz GS, Moldawer LL, Barbul A (1998) Metalloproteinase inhibitors and wound healing: a novel enhancer of wound strength. Surgery 124:464–470

    Article  PubMed  CAS  Google Scholar 

  38. Nishi K, Ishii T, Wada M, Amae S, Sano N, Nio M, Hayashi Y (2004) The colon displays an absorptive capacity of tacrolimus. Transplant Proc 36:364–366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the contribution of Dr. G. Menexes, lecturer of Biometry in Aristotle University of Thessaloniki, to the statistical analysis of this study. Mrs. Vasiliki Kanellou, BA in English Language and Linguistics, MA in Applied Linguistics, is also acknowledged for proof reading and revising the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Raptis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raptis, D., Mantzoros, I., Pramateftakis, M.G. et al. The effects of tacrolimus on colonic anastomotic healing in rats. Int J Colorectal Dis 27, 299–308 (2012). https://doi.org/10.1007/s00384-011-1337-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-011-1337-y

Keywords

Navigation