Skip to main content
Log in

High incidence of EDNRB gene mutation in seven southern Chinese familial cases with Hirschsprung’s disease

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Hirschsprung’s disease (HSCR) is the leading cause of neonatal functional intestinal obstruction, which has been identified in many familial cases. HSCR, a multifactorial disorder of enteric nervous system (ENS) development, is associated with at least 24 genes and seven chromosomal loci, with RET and EDNRB as its major genes. We present a genetic investigation of familial HSCR to clarify the genotype–phenotype relationship.

Methods

We performed whole exome sequencing (WES) on Illumina HiSeq X Ten platform to investigate genetic backgrounds of core family members, and identified the possibly harmful mutation genes. Mutation carriers and pedigree relatives were validated by Sanger sequencing for evaluating the gene penetrance.

Results

Four familial cases showed potential disease-relative variants in EDNRB and RET gene, accounting for all detection rate of 57.1%. Three familial cases exhibited strong pathogenic variants as frameshift or missense mutations in EDNRB gene. A novel c.367delinsTT mutation of EDNRB was identified in one family member. The other two EDNRB mutations, c.553G>A in family 2 and c.877delinsTT in family 5, have been reported in previous literatures. The penetrance of EDNRB variants was 33–50% according mutation carries. In family 6, the RET c.1858T>C (C620R) point mutation has previously been reported to cause HSCR, with 28.5% penetrance.

Conclusion

We identified a novel EDNRB (deleted C and inserted TT) mutation in this study using WES. Heterozygote variations in EDNRB gene were significantly enriched in three families and RET mutations were identified in one family. EDNRB variants showed an overall higher incidence and penetrance than RET in southern Chinese families cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Borrego S, Ruiz-Ferrer M, Fernandez RM et al (2013) Hirschsprung’s disease as a model of complex genetic etiology. Histol Histopathol 28(9):1117–1136. https://doi.org/10.14670/HH-28.1117

    Article  CAS  PubMed  Google Scholar 

  2. Karim A, Tang CS, Tam PK (2021) The emerging genetic landscape of hirschsprung disease and its potential clinical applications. Front Pediatr 9:638093. https://doi.org/10.3389/fped.2021.638093

    Article  PubMed  PubMed Central  Google Scholar 

  3. Butler TN, Trainor PA (2013) The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res 162(1):1–15. https://doi.org/10.1016/j.trsl.2013.03.001

    Article  CAS  Google Scholar 

  4. Bodian M, Carter CO, Ward BC (1951) Hirschsprung’s disease. Lancet 1(6650):302–309. https://doi.org/10.1016/s0140-6736(51)92290-8

    Article  CAS  PubMed  Google Scholar 

  5. Tilghman JM, Ling AY, Turner TN et al (2019) Molecular genetic anatomy and risk profile of Hirschsprung’s disease. New Engl J Med 380(15):1421–1432. https://doi.org/10.1056/NEJMoa1706594

    Article  CAS  PubMed  Google Scholar 

  6. Widowati T, Melhem S, Patria SY et al (2016) RET and EDNRB mutation screening in patients with Hirschsprung disease: functional studies and its implications for genetic counseling. Eur J Hum Genet 24(6):823–829. https://doi.org/10.1038/ejhg.2015.214

    Article  CAS  PubMed  Google Scholar 

  7. Edery P, Lyonnet S, Mulligan LM et al (1994) Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature 367(6461):378–380. https://doi.org/10.1038/367378a0

    Article  CAS  PubMed  Google Scholar 

  8. Chakravarti A (1996) Endothelin receptor-mediated signaling in hirschsprung disease. Hum Mol Genet 5(3):303–307

    CAS  PubMed  Google Scholar 

  9. Arai H, Nakao K, Takaya K et al (1993) The human endothelin-B receptor gene. Structural organization and chromosomal assignment. J Biol Chem 268(5):3463–3470

    Article  CAS  PubMed  Google Scholar 

  10. Sakamoto A, Yanagisawa M, Sakurai T et al (1991) Cloning and functional expression of human cDNA for the ETB endothelin receptor. Biochem Bioph Res Co 178(2):656–663. https://doi.org/10.1016/0006-291x(91)90158-4

    Article  CAS  Google Scholar 

  11. Shin MK, Levorse JM, Ingram RS et al (1999) The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature 402(6761):496–501. https://doi.org/10.1038/990040

    Article  CAS  PubMed  Google Scholar 

  12. Svensson PJ, Tapper-Persson M, Anvret M et al (1999) Mutations in the endothelin-receptor B gene in Hirschsprung disease in Sweden. Clin Genet 55(3):215–217. https://doi.org/10.1034/j.1399-0004.1999.550312.x

    Article  CAS  PubMed  Google Scholar 

  13. Attie T, Pelet A, Edery P et al (1995) Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung disease. Hum Mol Genet 4(8):1381–1386. https://doi.org/10.1093/hmg/4.8.1381

    Article  CAS  PubMed  Google Scholar 

  14. Tang W, Li B, Tang J et al (2013) Methylation analysis of EDNRB in human colon tissues of Hirschsprung’s disease. Pediatr Surg Int 29(7):683–688. https://doi.org/10.1007/s00383-013-3308-6

    Article  PubMed  Google Scholar 

  15. Moore SW (2012) Chromosomal and related Mendelian syndromes associated with Hirschsprung’s disease. Pediatr Surg Int 28(11):1045–1058. https://doi.org/10.1007/s00383-012-3175-6

    Article  CAS  PubMed  Google Scholar 

  16. Chen WC, Chang SS, Sy ED et al (2006) A De Novo novel mutation of the EDNRB gene in a Taiwanese boy with Hirschsprung disease. J Formos Med Assoc 105(4):349–354. https://doi.org/10.1016/S0929-6646(09)60128-5

    Article  CAS  PubMed  Google Scholar 

  17. Tang CS, Karim A, Zhong Y et al (2023) Genetics of Hirschsprung’s disease. Pediatr Surg Int 39(1):104. https://doi.org/10.1007/s00383-022-05358-x

    Article  PubMed  Google Scholar 

  18. Sancandi M, Ceccherini I, Costa M et al (2000) Incidence of RET mutations in patients with Hirschsprung’s disease. J Pediatr Surg 35(1):139–142. https://doi.org/10.1016/s0022-3468(00)80031-7. (142–143)

    Article  CAS  PubMed  Google Scholar 

  19. So MT, Leon TY, Cheng G et al (2011) RET mutational spectrum in Hirschsprung disease: evaluation of 601 Chinese patients. PLoS ONE 6(12):e28986. https://doi.org/10.1371/journal.pone.0028986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mulligan LM, Eng C, Attie T et al (1994) Diverse phenotypes associated with exon 10 mutations of the RET proto-oncogene. Hum Mol Genet 3(12):2163–2167. https://doi.org/10.1093/hmg/3.12.2163

    Article  CAS  PubMed  Google Scholar 

  21. Carniti C, Belluco S, Riccardi E et al (2006) The Ret(C620R) mutation affects renal and enteric development in a mouse model of Hirschsprung’s disease. Am J Pathol 168(4):1262–1275. https://doi.org/10.2353/ajpath.2006.050607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin YC, Lai HS, Hsu WM et al (2008) Mutation analysis of endothelin-B receptor gene in patients with Hirschsprung disease in Taiwan. J Pediatr Gastr Nutr 46(1):36–40. https://doi.org/10.1097/01.mpg.0000304451.54057.df

    Article  CAS  Google Scholar 

  23. Kusafuka T, Wang Y, Puri P (1997) Mutation analysis of the RET, the endothelin-B receptor, and the endothelin-3 genes in sporadic cases of Hirschsprung’s disease. J Pediatr Surg 32(3):501–504. https://doi.org/10.1016/s0022-3468(97)90616-3

    Article  CAS  PubMed  Google Scholar 

  24. Chen B, Ouyang HL, Wang WH et al (2016) Hirschsprung disease is associated with an L286P mutation in the fifth transmembrane domain of the endothelin-B receptor in the N-ethyl-N-nitrosourea-induced mutant line. Exp Anim Tokyo 65(3):245–251. https://doi.org/10.1538/expanim.15-0110

    Article  CAS  Google Scholar 

  25. Zhang Z, Li Q, Diao M et al (2017) Sporadic Hirschsprung disease: mutational spectrum and novel candidate genes revealed by next-generation sequencing. Sci Rep-Uk 7(1):14796. https://doi.org/10.1038/s41598-017-14835-6

    Article  CAS  Google Scholar 

  26. Jiang Q, Wang Y, Li Q et al (2019) Sequence characterization of RET in 117 Chinese Hirschsprung disease families identifies a large burden of de novo and parental mosaic mutations. Orphanet J Rare Dis 14(1):237. https://doi.org/10.1186/s13023-019-1194-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jiang Q, Wang Y, Gao Y et al (2021) RET compound inheritance in Chinese patients with Hirschsprung disease: lack of penetrance from insufficient gene dysfunction. Hum Genet 140(5):813–825. https://doi.org/10.1007/s00439-020-02247-y

    Article  CAS  PubMed  Google Scholar 

  28. Yang J, Duan S, Zhong R et al (2013) Exome sequencing identified NRG3 as a novel susceptible gene of Hirschsprung’s disease in a Chinese population. Mol Neurobiol 47(3):957–966. https://doi.org/10.1007/s12035-012-8392-4

    Article  CAS  PubMed  Google Scholar 

  29. Gui H, Schriemer D, Cheng WW et al (2017) Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biol 18(1):48. https://doi.org/10.1186/s13059-017-1174-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang W, Chen SC, Lai JY et al (2019) Distinctive genetic variation of long-segment Hirschsprung’s disease in Taiwan. Neurogastroent Motil 31(11):e13665. https://doi.org/10.1111/nmo.13665

    Article  Google Scholar 

  31. Zhang Y, He Q, Zhang R et al (2017) Large-scale replication study identified multiple independent SNPs in RET synergistically associated with Hirschsprung disease in Southern Chinese population. Aging (Albany Ny) 9(9):1996–2009. https://doi.org/10.18632/aging.101294

    Article  CAS  PubMed  Google Scholar 

  32. Amiel J, Sproat-Emison E, Garcia-Barcelo M et al (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45(1):1–14. https://doi.org/10.1136/jmg.2007.053959

    Article  CAS  PubMed  Google Scholar 

  33. Tang CS, Li P, Lai FP et al (2018) Identification of genes associated with hirschsprung disease, based on whole-genome sequence analysis, and potential effects on enteric nervous system development. Gastroenterology 155(6):1908–1922. https://doi.org/10.1053/j.gastro.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  34. Puffenberger EG, Hosoda K, Washington SS et al (1994) A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell 79(7):1257–1266. https://doi.org/10.1016/0092-8674(94)90016-7

    Article  CAS  PubMed  Google Scholar 

  35. Baylin SB, Herman JG, Graff JR et al (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    Article  CAS  PubMed  Google Scholar 

  36. Strobl-Mazzulla PH, Marini M, Buzzi A (2012) Epigenetic landscape and miRNA involvement during neural crest development. Dev Dynam 241(12):1849–1856. https://doi.org/10.1002/dvdy.23868

    Article  CAS  Google Scholar 

  37. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21(2):163–167. https://doi.org/10.1038/5947

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the numerous patients, their families, and referring physicians who have participated in these studies and to the numerous members of our laboratories for their valuable contributions. We are grateful to Dr. Ma Jian for his valuable advice on this project and thank the Science and Technology Program of Guangzhou for providing financial support.

Funding

This study is financially supported by the Science and Technology Program of Guangzhou, China (Grant number: 202102080069).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: LZ and XCZ. Patients information acquisition: LKY, LX, JLZ, and RH. Sequence experiment: HYD and WL. Analysis and data interpretation: YLF, QYW, and ZY. Drafting of the manuscript: HYD and WL. Critical revision: SJX and HD.

Corresponding authors

Correspondence to Liang Zhang or Xiao-chun Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical

The study was approved by the Guangdong Women and Children Hospital Ethics Committee (Number: 202001101).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Hy., Lei, W., Xiao, Sj. et al. High incidence of EDNRB gene mutation in seven southern Chinese familial cases with Hirschsprung’s disease. Pediatr Surg Int 40, 38 (2024). https://doi.org/10.1007/s00383-023-05620-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00383-023-05620-w

Keywords

Navigation