Skip to main content

Advertisement

Log in

Risk factors of postoperative adhesive bowel obstruction in children with complicated appendicitis

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Postoperative adhesive bowel obstruction (ABO) is a common complication especially in complicated appendicitis. This study aimed to analyze the risk factors for ABO following appendectomy in children with complicated appendicitis, and establish a scoring model for predicting postoperative ABO and treatment option to relieve the obstruction.

Methods

From December 2014 to January 2020, all files of consecutive patients with complicated appendicitis underwent appendectomy were reviewed. Univariate and multivariate analyses were used to screen out the risk factors of postoperative ABO, and establish a scoring model for predicting postoperative ABO and surgical relief to relieve the obstruction.

Results

Of the 780 patients, 87 (11.2%) had ABO following appendectomy, including 27 who underwent surgical relief. Age ≤ 6 years, overweight and obesity, duration of symptoms ≥ 36 h, C-reactive protein ≥ 99 mg/L, duration of operation ≥ 60 min, intraoperative peritoneal lavage, and postoperative flatus time ≥ 20 h were independent risk factors for postoperative ABO. The final scoring model for postoperative ABO included factors above, and exhibited a high degree of discrimination (area under the curve [AUC]: 0.937; 95% confidence interval [CI] 0.913–0.960) corresponding to an optimal cut-off value of 6: 82.8% sensitivity, 92.6% specificity. Furthermore, the scoring model showed a sensitivity of 74.1% and a specificity of 91.7% for patients wo underwent surgical relief to relieve obstruction with the optimal cut-off value of 9.

Conclusion

Risk factors for postoperative ABO should be taken seriously in children with complicated appendicitis. The scoring model is a novel but promising method to predict postoperative ABO and provide reference for clinical decision-making to relieve the obstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buckius MT, McGrath B, Monk J, Grim R, Bell T, Ahuja V (2012) Changing epidemiology of acute appendicitis in the United States: study period 1993–2008. J Surg Res 175:185–190. https://doi.org/10.1016/j.jss.2011.07.017

    Article  PubMed  Google Scholar 

  2. Almström M, Svensson JF, Svenningsson A, Hagel E, Wester T (2019) Population-based cohort study of the correlation between provision of care and the risk for complications after appendectomy in children. J Pediatr Surg 54:2279–2284. https://doi.org/10.1016/j.jpedsurg.2019.03.013

    Article  PubMed  Google Scholar 

  3. Ming PC, Yan TY, Tat LH (2009) Risk factors of postoperative infections in adults with complicated appendicitis. Surg Laparosc Endosc Percutan Tech 19:244–248. https://doi.org/10.1097/SLE.0b013e3181a4cda2

    Article  PubMed  Google Scholar 

  4. de Wijkerslooth EML, van den Boom AL, Wijnhoven BPL (2019) Variation in classification and postoperative management of complex appendicitis: a European survey. World J Surg 43:439–446. https://doi.org/10.1007/s00268-018-4806-4

    Article  PubMed  Google Scholar 

  5. Salminen P, Paajanen H, Rautio T, Nordström P, Aarnio M, Rantanen T et al (2015) Antibiotic therapy vs appendectomy for treatment of uncomplicated acute appendicitis: the APPAC randomized clinical trial. JAMA 313:2340–2348. https://doi.org/10.1001/jama.2015.6154

    Article  CAS  PubMed  Google Scholar 

  6. Duron JJ, Silva NJ, du Montcel ST, Berger A, Muscari F, Hennet H et al (2006) Adhesive postoperative small bowel obstruction: incidence and risk factors of recurrence after surgical treatment: a multicenter prospective study. Ann Surg 244:750–757. https://doi.org/10.1097/01.sla.0000225097.60142.68

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lautz TB, Raval MV, Reynolds M, Barsness KA (2011) Adhesive small bowel obstruction in children and adolescents: operative utilization and factors associated with bowel loss. J Am Coll Surg 212:855–861. https://doi.org/10.1016/j.jamcollsurg.2011.01.061

    Article  PubMed  Google Scholar 

  8. Bracho-Blanchet E, Dominguez-Muñoz A, Fernandez-Portilla E, Zalles-Vidal C, Davila-Perez R (2017) Predictive value of procalcitonin for intestinal ischemia and/or necrosis in pediatric patients with adhesive small bowel obstruction (ASBO). J Pediatr Surg 52:1616–1620. https://doi.org/10.1016/j.jpedsurg.2017.07.006

    Article  PubMed  Google Scholar 

  9. Li M, Zhu W, Li Y, Jiang J, Li J, Li N (2014) Long intestinal tube splinting prevents postoperative adhesive small-bowel obstruction in sclerosing encapsulating peritonitis. BMC Gastroenterol 14:180. https://doi.org/10.1186/1471-230X-14-180

    Article  PubMed  PubMed Central  Google Scholar 

  10. Menzies D, Ellis H (1990) Intestinal obstruction from adhesions—how big is the problem? Ann R Coll Surg Engl 72:60–63

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vrijland WW, Jeekel J, van Geldorp HJ, Swank DJ, Bonjer HJ (2003) Abdominal adhesions: intestinal obstruction, pain, and infertility. Surg Endosc 17:1017–1022. https://doi.org/10.1007/s00464-002-9208-9

    Article  CAS  PubMed  Google Scholar 

  12. Van Der Krabben AA, Dijkstra FR, Nieuwenhuijzen M, Reijnen MM, Schaapveld M, Van Goor H (2000) Morbidity and mortality of inadvertent enterotomy during adhesiotomy. Br J Surg 87:467–471. https://doi.org/10.1046/j.1365-2168.2000.01394.x

    Article  Google Scholar 

  13. Fredriksson F, Christofferson RH, Lilja HE (2006) Adhesive small bowel obstruction after laparotomy during infancy. Br J Surg 103:284–289. https://doi.org/10.1002/bjs.10072

    Article  Google Scholar 

  14. Li Y, James C, Byl N, Sessel J, Caird MS, Farley FA et al (2020) Obese children have different forearm fracture characteristics compared with normal-weight children. J Pediatr Orthop 40:e127–e130. https://doi.org/10.1097/BPO.0000000000001402

    Article  PubMed  Google Scholar 

  15. Michailidou M, Sacco Casamassima MG, Goldstein SD, Gause C, Karim O, Salazar JH et al (2015) The impact of obesity on laparoscopic appendectomy: results from the ACS National Surgical Quality Improvement Program pediatric database. J Pediatr Surg 50:1880–1884. https://doi.org/10.1016/j.jpedsurg.2015.07.005

    Article  PubMed  Google Scholar 

  16. Feng W, Zhao XF, Li MM, Cui HL (2020) A clinical prediction model for complicated appendicitis in children younger than 5 years of age. BMC Pediatr 20:401. https://doi.org/10.1186/s12887-020-02286-4

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leung TT, Dixon E, Gill M, Mador BD, Moulton KM, Kaplan GG et al (2009) Bowel obstruction following appendectomy: what is the true incidence? Ann Surg 250:51–53. https://doi.org/10.1097/SLA.0b013e3181ad64a7

    Article  PubMed  Google Scholar 

  18. Nataraja RM, Panabokke G, Chang AD, Mennie N, Tanny ST, Keys C (2019) Does peritoneal lavage influence the rate of complications following pediatric laparoscopic appendicectomy in children with complicated appendicitis? A prospective randomized clinical trial. J Pediatr Surg 54:2524–2527. https://doi.org/10.1016/j.jpedsurg.2019.08.039

    Article  PubMed  Google Scholar 

  19. Antoniou SA, Antoniou GA, Granderath FA (2015) Risk for bowel obstruction following laparoscopic and open appendectomy. J Gastrointest Surg 19:795–796. https://doi.org/10.1007/s11605-015-2768-5

    Article  PubMed  Google Scholar 

  20. Ellis H (1982) The causes and prevention of intestinal adhesions. Br J Surg 69:241–243. https://doi.org/10.1002/bjs.1800690502

    Article  CAS  PubMed  Google Scholar 

  21. Andersson RE (2014) Short-term complications and long-term morbidity of laparoscopic and open appendicectomy in a national cohort. Br J Surg 101:1135–1142. https://doi.org/10.1002/bjs.9552

    Article  CAS  PubMed  Google Scholar 

  22. Tseng CJ, Sun DP, Lee IC, Weng SF, Chou CL (2016) Factors associated with small bowel obstruction following appendectomy: a population-based study. Medicine (Baltimore) 95:e3541. https://doi.org/10.1097/MD.0000000000003541

    Article  Google Scholar 

  23. Andersson RE (2001) Small bowel obstruction after appendicectomy. Br J Surg 88:1387–1391. https://doi.org/10.1046/j.0007-1323.2001.01869.x

    Article  CAS  PubMed  Google Scholar 

  24. Angenete E, Jacobsson A, Gellerstedt M, Haglind E (2012) Effect of laparoscopy on the risk of small-bowel obstruction: a population-based register study. Arch Surg 147:359–365. https://doi.org/10.1001/archsurg.2012.31

    Article  PubMed  Google Scholar 

  25. Kutasy B, Puri P (2013) Appendicitis in obese children. Pediatr Surg Int 29:537–544. https://doi.org/10.1007/s00383-013-3289-5

    Article  PubMed  Google Scholar 

  26. Garey CL, Laituri CA, Little DC, Ostlie DJ, St Peter SD (2011) Outcomes of perforated appendicitis in obese and nonobese children. J Pediatr Surg 46:2346–2348. https://doi.org/10.1016/j.jpedsurg.2011.09.024

    Article  PubMed  Google Scholar 

  27. Gates NL, Rampp RD, Koontz CC, Holcombe JM, Bhattacharya SD (2019) Single-incision laparoscopic appendectomy in children and conversion to multiport appendectomy. J Surg Res 235:223–226. https://doi.org/10.1016/j.jss.2018.08.050

    Article  PubMed  Google Scholar 

  28. Litz CN, Farach SM, Danielson PD, Chandler NM (2016) Obesity and single-incision laparoscopic appendectomy in children. J Surg Res 203:283–286. https://doi.org/10.1016/j.jss.2016.03.039

    Article  PubMed  Google Scholar 

  29. Cantürk Z, Cantürk NZ, Cetinarslan B, Utkan NZ, Tarkun I (2003) Nosocomial infections and obesity in surgical patients. Obes Res 11:769–775. https://doi.org/10.1038/oby.2003.107

    Article  PubMed  Google Scholar 

  30. de Jongh RT, Serné EH, IJzerman RG, de Vries G, Stehouwer CD (2004) Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation 109:2529–2535. https://doi.org/10.1161/01.CIR.0000129772.26647.6F

    Article  PubMed  Google Scholar 

  31. Collins GS, Reitsma JB, Altman DG, Moons KG (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350:g7594. https://doi.org/10.1136/bmj.g7594

    Article  PubMed  Google Scholar 

  32. Tingstedt B, Isaksson J, Andersson R (2007) Long-term follow-up and cost analysis following surgery for small bowel obstruction caused by intra-abdominal adhesions. Br J Surg 94:743–748. https://doi.org/10.1002/bjs.5634

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Tianjin Science and Technology Plan Project (Grant no. 14RCGFSY00150) for data collection and language polishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Lei Cui.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the relevant guidelines and regulations approved by the Institutional Research Ethics Board of Tianjin Children’s Hospital (IRB no. L2020-29) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Du, XB., Zhao, XF. et al. Risk factors of postoperative adhesive bowel obstruction in children with complicated appendicitis. Pediatr Surg Int 37, 745–754 (2021). https://doi.org/10.1007/s00383-021-04862-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-021-04862-w

Keywords

Navigation