Skip to main content

Advertisement

Log in

Developmental histology of the portal plate in biliary atresia: observations and implications

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

The key characteristic of biliary atresia (BA) is obliteration of the extrahepatic bile ducts at the level of the porta hepatis. We aimed to relate the immunohistochemical features of remnant biliary ductules at the porta hepatis with clinical features and outcomes.

Methods

Samples were immunostained with anti-cytokeratin 20 (CK20), vimentin and alpha-smooth muscle actin (aSMA). Primary outcome was set as clearance of jaundice (bilirubin ≤ 20 μmol/L) following Kasai portoenterostomy (KPE).

Results

Eighty-two cases were classified into syndromic BA (n = 10), cystic BA (n = 7), CMV IgM+ BA (n = 9) and isolated BA (n = 56). CK20 expression was confirmed in 40/82 (49%), and vimentin expression in 19/82 (23%). aSMA was negative in all cases studied. CK20 expression was less common in isolated BA (n = 20/56, 36%) compared to CMV IgM+ BA (n = 8/9, 89%), cystic BA (n = 7/7, 100%) (isolated BA vs non-isolated BA, P = 0.0008). There was no difference in vimentin expression among the sub-groups (isolated BA vs. non-isolated BA; P = 0.39). CoJ was achieved in 52/82 (63%) overall with significant difference depending simply on sub-group [e.g. syndromic BA 9/10 (90%)]. CK20 expression was associated with a diminished rate of CoJ in the entire cohort [CK20+ 32/56 (57%) vs. CK20− 20/26 (77%); P = 0.04]. By contrast no correlation was observed between vimentin expression and CoJ (P = 0.13).

Conclusion

CK20+ expression was associated with reduced clearance of jaundice in BA and a trend towards reduced native liver survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scottoni F, Davenport M (2020) Biliary atresia: potential for a new decade. Semin Pediatr Surg 29:150940. https://doi.org/10.1016/j.sempedsurg.2020.150940

    Article  PubMed  Google Scholar 

  2. Davenport M, Savage M, Mowat AP, Howard ER (1993) Biliary atresia splenic malformation syndrome: an etiologic and prognostic subgroup. Surgery 113:662–668

    CAS  PubMed  Google Scholar 

  3. Davenport M, Tizzard SA, Underhill J, Mieli-Vergani G, Portmann B, Hadžić N (2006) The biliary atresia splenic malformation syndrome: a 28-year single-center retrospective study. J Pediatr 149(3):393–400. https://doi.org/10.1016/j.jpeds.2006.05.030

    Article  PubMed  Google Scholar 

  4. Allotey J, Lacaille F, Lees MM et al (2008) Congenital bile duct anomalies (biliary atresia) and chromosome 22 aneuploidy. J Pediatr Surg 43(9):1736–1740. https://doi.org/10.1016/j.jpedsurg.2008.05.012

    Article  PubMed  Google Scholar 

  5. Caponcelli E, Knisely AS, Davenport M (2008) Cystic biliary atresia: an etiologic and prognostic subgroup. J Pediatr Surg 43:1619–1624. https://doi.org/10.1016/j.jpedsurg.2007.12.058

    Article  PubMed  Google Scholar 

  6. Zani A, Quaglia A, Hadzić N, Zuckerman M, Davenport M (2015) Cytomegalovirus-associated biliary atresia: an aetiological and prognostic subgroup. J Pediatr Surg 50(10):1739–1745. https://doi.org/10.1016/j.jpedsurg.2015.03.001

    Article  PubMed  Google Scholar 

  7. Hill R, Quaglia A, Hussain M et al (2015) Th-17 cells infiltrate the liver in human biliary atresia and are related to surgical outcome. J Pediatr Surg 50:1297–1303. https://doi.org/10.1016/j.jpedsurg.2015.02.005

    Article  PubMed  Google Scholar 

  8. Shalaby A, Hajhosseiny R, Zen Y, Davenport M, Quaglia A (2016) Planimetry of the porta hepatis in biliary atresia. Histopathology 69:943–949. https://doi.org/10.1111/his.13028

    Article  PubMed  Google Scholar 

  9. Davenport M, Parsons C, Tizzard S, Hadzic N (2013) Steroids in biliary atresia: single surgeon, single centre, prospective study. J Hepatol 59:1054–1058. https://doi.org/10.1016/j.jhep.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  10. Parolini F, Hadzic N, Davenport M (2019) Adjuvant therapy of cytomegalovirus IgM + ve associated biliary atresia: prima facie evidence of effect. J Pediatr Surg 54:1941–1945. https://doi.org/10.1016/j.jpedsurg.2018.12.014

    Article  PubMed  Google Scholar 

  11. Zen Y, Zen C, Quaglia A et al (2011) Intestinal phenotypes in pediatric gallbladder epithelium. Hum Pathol 42:1454–1458. https://doi.org/10.1016/j.humpath.2010.12.012

    Article  CAS  PubMed  Google Scholar 

  12. Díaz R, Kim JW, Hui JJ et al (2008) Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. Hum Pathol 39:102–115

    Article  Google Scholar 

  13. Omenetti A, Bass LM, Anders RA et al (2011) Hedgehog activity, epithelial mesenchymal transition s and biliary dysmorphogenesis in biliary atresia. Hepatology 53:1246–1258

    Article  CAS  Google Scholar 

  14. Grieve A, Makin E, Davenport M (2013) Aspartate aminotransferase-to-platelet ratio index (APRi) in infants with biliary atresia: prognostic value at presentation. J Pediatr Surg 48:789–795. https://doi.org/10.1016/j.jpedsurg.2012.10.010

    Article  PubMed  Google Scholar 

  15. Lawrence D, Howard ER, Tzannatos C, Mowat AP (1981) Hepatic portoenterostomy for biliary atresia. A comparative study of histology and prognosis after surgery. Arch Dis Child 56:460–463. https://doi.org/10.1136/adc.56.6.460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tan CE, Davenport M, Driver M, Howard ER (1994) Does the morphology of the extrahepatic biliary remnants in biliary atresia influence survival? A review of 205 cases. J Pediatr Surg 29:1459–1464

    Article  CAS  Google Scholar 

  17. Bove KE, Thrasher AD, Anders R, Chung CT et al (2018) Active fibroplasia, and end-stage fibrosis in 172 biliary atresia remnants correlate poorly with age at Kasai portoenterostomy, visceral heterotaxy, and outcome. Am J Surg Pathol 42:1625–1635

    Article  Google Scholar 

  18. Sasaki H, Nio M, Iwami D et al (2001) Cytokeratin subtypes in biliary atresia: immunohistochemical study. Pathol Int 51:511–518. https://doi.org/10.1046/j.1440-1827.2001.01241.x

    Article  CAS  PubMed  Google Scholar 

  19. Roskams T, Desmet V (2008) Embryology of extra- and intra-hepatic bile ducts, the ductal plate. Anat Rec 291:628–635

    Article  CAS  Google Scholar 

  20. Santos JL, Kieling CO, Meurer L, Vieira S, Ferreira CT, Lorentz A et al (2009) The extent of biliary proliferation in liver biopsies from patients with biliary atresia at portoenterostomy is associated with the postoperative prognosis. J Pediatr Surg 44:695–701

    Article  Google Scholar 

  21. Yamaguti DC, Patrício FR (2011) Morphometrical and immunohistochemical study of intrahepatic bile ducts in biliary atresia. Eur J Gastroenterol Hepatol 23:759–765

    Article  CAS  Google Scholar 

  22. Yang J, Wei N, Su Y et al (2020) A morphology-based analysis of biliary ductules after Kasai procedure and a review of the literature. J Surg Res 251:180–186

    Article  Google Scholar 

  23. Lampela H, Kosola S, Heikkila P et al (2014) Native liver histology after successful portoenterostomy in biliary atresia. J Clin Gastroenterol 48:721–728

    Article  CAS  Google Scholar 

  24. Kerola A, Lohi J, Heikkilä P et al (2019) Divergent expression of liver transforming growth factor superfamily cytokines after successful portoenterostomy in biliary atresia. Surgery 165:905–911

    Article  Google Scholar 

  25. Cabibi D, Licata A, Barresi E, Craxì A, Aragona F (2003) Expression of cytokeratin 7 and 20 in pathological conditions of the bile tract. Pathol Res Pract 199:65–70. https://doi.org/10.1078/0344-0338-00356

    Article  PubMed  Google Scholar 

  26. Nakanuma Y (2009) Epithelial-mesenchymal transition induced by biliary innate immunity contributes to the sclerosing cholangiopathy of biliary atresia. J Pathol 217:654–664. https://doi.org/10.1002/path.2488

    Article  CAS  PubMed  Google Scholar 

  27. Chu AS, Diaz R, Hui JJ et al (2011) Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 53(5):1685–1695. https://doi.org/10.1002/hep.24206

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mavila N, James D, Shivakumar P, Nguyen MV, Utley S, Mak K et al (2014) Expansion of prominin-1-expressing cells in association with fibrosis of biliary atresia. Hepatology 60:941–953. https://doi.org/10.1002/hep.27203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zagory JA, Nguyen MV, Dietz W et al (2016) Toll-like receptor 3 mediates PROMININ-1 expressing cell expansion in biliary atresia via TGF-beta. J Pediatr Surg 51:917–922

    Article  Google Scholar 

  30. Zhou T, Kyritsi K et al (2019) Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2−/− mouse model of primary sclerosing cholangitis (PSC). EBIO Med 48:130–142. https://doi.org/10.1016/j.ebiom.2019.09.013

    Article  Google Scholar 

  31. Mysore KR, Shneider BL, Harpavat S (2019) Biliary atresia as a disease starting in utero. Implications for treatment, diagnosis and pathogenesis. J Pediatr Gastrol Enterol Nutr 69:396–403

    Article  Google Scholar 

  32. Makin E, Quaglia A, Kvist N et al (2009) Congenital biliary atresia: liver injury begins at birth. J Pediatr Surg 44:630–633. https://doi.org/10.1016/j.jpedsurg.2008.10.069

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We recognise the superb technical skill and help with processing histological material at the laboratories of the Institute of Liver Studies.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Laboratory work was performed by ELP and YZ. Data analysis were performed by MD. The first draft of the manuscript was written by MD and YZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mark Davenport.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Pergola, E., Zen, Y. & Davenport, M. Developmental histology of the portal plate in biliary atresia: observations and implications. Pediatr Surg Int 37, 715–721 (2021). https://doi.org/10.1007/s00383-021-04861-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-021-04861-x

Keywords

Navigation