Skip to main content

Advertisement

Log in

Assessment of the nitrofen model of congenital diaphragmatic hernia and of the dysregulated factors involved in pulmonary hypoplasia

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

To study pulmonary hypoplasia (PH) associated with congenital diaphragmatic hernia (CDH), investigators have been employing a fetal rat model based on nitrofen administration to dams. Herein, we aimed to: (1) investigate the validity of the model, and (2) synthesize the main biological pathways implicated in the development of PH associated with CDH.

Methods

Using a defined strategy, we conducted a systematic review of the literature searching for studies reporting the incidence of CDH or factors involved in PH development. We also searched for PH factor interactions, relevance to lung development and to human PH.

Results

Of 335 full-text articles, 116 reported the incidence of CDH after nitrofen exposure or dysregulated factors in the lungs of nitrofen-exposed rat fetuses. CDH incidence: 54% (27–85%) fetuses developed a diaphragmatic defect, whereas the whole litter had PH in varying degrees. Downregulated signaling pathways included FGF/FGFR, BMP/BMPR, Sonic Hedgehog and retinoid acid signaling pathway, resulting in a delay in early epithelial differentiation, immature distal epithelium and dysfunctional mesenchyme.

Conclusions

The nitrofen model effectively reproduces PH as it disrupts pathways that are critical for lung branching morphogenesis and alveolar differentiation. The low CDH rate confirms that PH is an associated phenomenon rather than the result of mechanical compression alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burgos CM, Frenckner B (2017) Addressing the hidden mortality in CDH: a population-based study. J Pediatr Surg 52:522–525. https://doi.org/10.1016/j.jpedsurg.2016.09.061

    Article  PubMed  Google Scholar 

  2. McGivern MR, Best KE, Rankin J, Wellesley D, Greenlees R, Addor M-C, Arriola L, de Walle H, Barisic I, Beres J, Bianchi F, Calzolari E, Doray B, Draper ES, Garne E, Gatt M, Haeusler M, Khoshnood B, Klungsoyr K, Latos-Bielenska A, O’Mahony M, Braz P, McDonnell B, Mullaney C, Nelen V, Queisser-Luft A, Randrianaivo H, Rissmann A, Rounding C, Sipek A, Thompson R, Tucker D, Wertelecki W, Martos C (2015) Epidemiology of congenital diaphragmatic hernia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed 100:F137–F144. https://doi.org/10.1136/archdischild-2014-306174

    Article  PubMed  Google Scholar 

  3. Balayla J, Abenhaim HA (2014) Incidence, predictors and outcomes of congenital diaphragmatic hernia: a population-based study of 32 million births in the United States. J Matern Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet 27:1438–1444. https://doi.org/10.3109/14767058.2013.858691

    Article  Google Scholar 

  4. Cauley RP, Potanos K, Fullington N, Bairdain S, Sheils CA, Finkelstein JA, Graham DA, Wilson JM (2015) Pulmonary support on day of life 30 is a strong predictor of increased 1 and 5-year morbidity in survivors of congenital diaphragmatic hernia. J Pediatr Surg 50:849–855. https://doi.org/10.1016/j.jpedsurg.2014.12.007

    Article  PubMed  Google Scholar 

  5. Russo FM, De Coppi P, Allegaert K, Toelen J, van der Veeken L, Attilakos G, Eastwood MP, David AL, Deprest J (2017) Current and future antenatal management of isolated congenital diaphragmatic hernia. Semin Fetal Neonatal Med 22:383–390. https://doi.org/10.1016/j.siny.2017.11.002

    Article  PubMed  Google Scholar 

  6. Chiu PPL (2014) New insights into congenital diaphragmatic hernia—a surgeon’s introduction to CDH animal models. Front Pediatr 2:36. https://doi.org/10.3389/fped.2014.00036

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kardon G, Ackerman KG, McCulley DJ, Shen Y, Wynn J, Shang L, Bogenschutz E, Sun X, Chung WK (2017) Congenital diaphragmatic hernias: from genes to mechanisms to therapies. Dis Model Mech 10:955–970. https://doi.org/10.1242/dmm.028365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wynn J, Yu L, Chung WK (2014) Genetic causes of congenital diaphragmatic hernia. Semin Fetal Neonatal Med 19:324–330. https://doi.org/10.1016/j.siny.2014.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  9. Costlow RD, Manson JM (1981) The heart and diaphragm: target organs in the neonatal death induced by nitrofen (2,4-dichlorophenyl-p-nitrophenyl ether). Toxicology 20:209–227

    Article  CAS  Google Scholar 

  10. Kluth D, Kangah R, Reich P, Tenbrinck R, Tibboel D, Lambrecht W (1990) Nitrofen-induced diaphragmatic hernias in rats: an animal model. J Pediatr Surg 25:850–854

    Article  CAS  Google Scholar 

  11. Tenbrinck R, Tibboel D, Gaillard JL, Kluth D, Bos AP, Lachmann B, Molenaar JC (1990) Experimentally induced congenital diaphragmatic hernia in rats. J Pediatr Surg 25:426–429

    Article  CAS  Google Scholar 

  12. Herriges M, Morrisey EE (2014) Lung development: orchestrating the generation and regeneration of a complex organ. Dev Camb Engl 141:502–513. https://doi.org/10.1242/dev.098186

    Article  CAS  Google Scholar 

  13. Suen HC, Catlin EA, Ryan DP, Wain JC, Donahoe PK (1993) Biochemical immaturity of lungs in congenital diaphragmatic hernia. J Pediatr Surg 28:471–475 (discussion 476–477)

    Article  CAS  Google Scholar 

  14. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005

    Article  Google Scholar 

  15. Chapin CJ, Ertsey R, Yoshizawa J, Hara A, Sbragia L, Greer JJ, Kitterman JA (2005) Congenital diaphragmatic hernia, tracheal occlusion, thyroid transcription factor-1, and fetal pulmonary epithelial maturation. Am J Physiol Lung Cell Mol Physiol 289:L44–L52. https://doi.org/10.1152/ajplung.00342.2004

    Article  CAS  PubMed  Google Scholar 

  16. Alfonso LF, Vilanova J, Aldazabal P, Lopez de Torre B, Tovar JA (1993) Lung growth and maturation in the rat model of experimentally induced congenital diaphragmatic hernia. Eur J Pediatr Surg Off J Austrian Assoc Pediatr Surg Al Z Kinderchir 3:6–11. https://doi.org/10.1055/s-2008-1063498

    Article  CAS  Google Scholar 

  17. Lin H, Wang Y, Xiong Z, Tang Y, Liu W (2007) Effect of antenatal tetrandrine administration on endothelin-1 and epidermal growth factor levels in the lungs of rats with experimental diaphragmatic hernia. J Pediatr Surg 42:1644–1651. https://doi.org/10.1016/j.jpedsurg.2007.05.017

    Article  PubMed  Google Scholar 

  18. Utsuki T, Hashizume K, Iwamori M (2001) Impaired spreading of surfactant phospholipids in the lungs of newborn rats with pulmonary hypoplasia as a model of congenital diaphragmatic hernia induced by nitrofen. Biochim Biophys Acta 1531:90–98

    Article  CAS  Google Scholar 

  19. Tovar JA, Alfonso LF, Aldazabal P, Lopez de Torre B, Uriarte S, Vilanova J (1992) The kidney in the fetal rat model of congenital diaphragmatic hernia induced by nitrofen. J Pediatr Surg 27:1356–1360

    Article  CAS  Google Scholar 

  20. Alles AJ, Losty PD, Donahoe PK, Manganaro TF, Schnitzer JJ (1995) Embryonic cell death patterns associated with nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 30:353–358 (discussion 359–360)

    Article  CAS  Google Scholar 

  21. North AJ, Moya FR, Mysore MR, Thomas VL, Wells LB, Wu LC, Shaul PW (1995) Pulmonary endothelial nitric oxide synthase gene expression is decreased in a rat model of congenital diaphragmatic hernia. Am J Respir Cell Mol Biol 13:676–682. https://doi.org/10.1165/ajrcmb.13.6.7576705

    Article  CAS  PubMed  Google Scholar 

  22. Alfonso LF, Arnaiz A, Alvarez FJ, Qi B, Diez-Pardo JA, Vallis-i-Soler A, Tovar JA (1996) Lung hypoplasia and surfactant system immaturity induced in the fetal rat by prenatal exposure to nitrofen. Neonatology 69:94–100. https://doi.org/10.1159/000244283

    Article  CAS  Google Scholar 

  23. Allan DW, Greer JJ (1997) Pathogenesis of nitrofen-induced congenital diaphragmatic hernia in fetal rats. J Appl Physiol Bethesda Md 83:338–347. https://doi.org/10.1152/jappl.1997.83.2.338

    Article  CAS  Google Scholar 

  24. Xia H, Migliazza L, Diez-Pardo JA, Tovar JA (1999) The tracheobronchial tree is abnormal in experimental congenital diaphragmatic hernia. Pediatr Surg Int 15:184–187

    Article  CAS  Google Scholar 

  25. Migliazza L, Xia H, Alvarez JI, Arnaiz A, Diez-Pardo JA, Alfonso LF, Tovar JA (1999) Heart hypoplasia in experimental congenital diaphragmatic hernia. J Pediatr Surg 34:706–710 (discussion 710–711)

    Article  CAS  Google Scholar 

  26. Migliazza L, Xia H, Diez-Pardo JA, Tovar JA (1999) Skeletal malformations associated with congenital diaphragmatic hernia: experimental and human studies. J Pediatr Surg 34:1624–1629

    Article  CAS  Google Scholar 

  27. Hoydu AK, Kitano Y, Kriss A, Hensley H, Bergey P, Flake A, Hubbard A, Leigh JS (2000) In vivo, in utero microscopic magnetic resonance imaging: application in a rat model of diaphragmatic hernia. Magn Reson Med 44:331–335

    Article  CAS  Google Scholar 

  28. Migliazza L, Xia HM, Arnaiz A, Alvarez JI, Alfonso LF, Diez-Pardo JA, Valls i Soler A, Tovar JA (2000) Prenatal dexamethasone rescues heart hypoplasia in fetal rats with congenital diaphragmatic hernia. J Pediatr Surg 35:1757–1761

    Article  CAS  Google Scholar 

  29. Yu J, Gonzalez S, Rodriguez JI, Diez-Pardo JA, Tovar JA (2001) Neural crest-derived defects in experimental congenital diaphragmatic hernia. Pediatr Surg Int 17:294–298. https://doi.org/10.1007/s003830100597

    Article  CAS  PubMed  Google Scholar 

  30. Yu J, Gonzalez S, Diez-Pardo JA, Tovar JA (2002) Effects of vitamin A on malformations of neural-crest-controlled organs induced by nitrofen in rats. Pediatr Surg Int 18:600–605. https://doi.org/10.1007/s00383-002-0865-5

    Article  PubMed  Google Scholar 

  31. Correia-Pinto J, Baptista MJ, Pedrosa C, Estevão-Costa J, Flake AW, Leite-Moreira AF (2003) Fetal heart development in the nitrofen-induced CDH rat model: the role of mechanical and nonmechanical factors. J Pediatr Surg 38:1444–1451. https://doi.org/10.1016/S0022-3468(03)00494-9

    Article  PubMed  Google Scholar 

  32. Rodriguez-Matas MJ, Gonzalez-Reyes S, Martínez L, Martínez I, Rodriguez JI, Diez-Pardo JA, Tovar JA (2003) The adrenal cortex in experimental congenital diaphragmatic hernia. J Pediatr Surg 38:682–684. https://doi.org/10.1016/jpsu.2003.50182

    Article  CAS  PubMed  Google Scholar 

  33. Gonzalez-Reyes S, Alvarez L, Diez-Pardo JA, Tovar JA (2003) Prenatal vitamin E improves lung and heart hypoplasia in experimental diaphargamatic hernia. Pediatr Surg Int 19:331–334. https://doi.org/10.1007/s00383-003-1005-6

    Article  CAS  PubMed  Google Scholar 

  34. Martínez L, González-Reyes S, Burgos E, Tovar JA (2004) The vagus and recurrent laryngeal nerves in experimental congenital diaphragmatic hernia. Pediatr Surg Int 20:253–257. https://doi.org/10.1007/s00383-003-1121-3

    Article  PubMed  Google Scholar 

  35. Baptista MJ, Melo-Rocha G, Pedrosa C, Gonzaga S, Teles A, Estevão-Costa J, Areias JC, Flake AW, Leite-Moreira AF, Correia-Pinto J (2005) Antenatal vitamin A administration attenuates lung hypoplasia by interfering with early instead of late determinants of lung underdevelopment in congenital diaphragmatic hernia. J Pediatr Surg 40:658–665. https://doi.org/10.1016/j.jpedsurg.2005.01.034

    Article  PubMed  Google Scholar 

  36. Oshiro T, Asato Y, Sakanashi M, Ohta T, Sugahara K (2005) Differential effects of vitamin A on fetal lung growth and diaphragmatic formation in nitrofen-induced rat model. Pulm Pharmacol Ther 18:155–164. https://doi.org/10.1016/j.pupt.2004.11.004

    Article  CAS  PubMed  Google Scholar 

  37. Folkesson HG, Chapin CJ, Beard LL, Ertsey R, Matthay MA, Kitterman JA (2006) Congenital diaphragmatic hernia prevents absorption of distal air space fluid in late-gestation rat fetuses. Am J Physiol Lung Cell Mol Physiol 290:L478–L484. https://doi.org/10.1152/ajplung.00124.2005

    Article  CAS  PubMed  Google Scholar 

  38. Montedonico S, Nakazawa N, Shinkai T, Bannigan J, Puri P (2007) Kidney development in the nitrofen-induced pulmonary hypoplasia and congenital diaphragmatic hernia in rats. J Pediatr Surg 42:239–243. https://doi.org/10.1016/j.jpedsurg.2006.09.062

    Article  PubMed  Google Scholar 

  39. Baird R, Khan N, Flageole H, Anselmo M, Puligandla P, Laberge J-M (2008) The effect of tracheal occlusion on lung branching in the rat nitrofen CDH model. J Surg Res 148:224–229. https://doi.org/10.1016/j.jss.2007.07.019

    Article  PubMed  Google Scholar 

  40. Sakai K, Kimura O, Furukawa T, Fumino S, Higuchi K, Wakao J, Kimura K, Aoi S, Masumoto K, Tajiri T (2014) Prenatal administration of neuropeptide bombesin promotes lung development in a rat model of nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 49:1749–1752. https://doi.org/10.1016/j.jpedsurg.2014.09.015

    Article  PubMed  Google Scholar 

  41. Tsuda H, Kotani T, Nakano T, Imai K, Hirako S, Li H, Kikkawa F (2016) Lipocalin 2 as a new biomarker for fetal lung hypoplasia in congenital diaphragmatic hernia. Clin Chim Acta Int J Clin Chem 462:71–76. https://doi.org/10.1016/j.cca.2016.08.023

    Article  CAS  Google Scholar 

  42. Zhu S, He Q, Zhang R, Wang Y, Zhong W, Xia H, Yu J (2016) Decreased expression of miR-33 in fetal lungs of nitrofen-induced congenital diaphragmatic hernia rat model. J Pediatr Surg 51:1096–1100. https://doi.org/10.1016/j.jpedsurg.2016.02.083

    Article  PubMed  Google Scholar 

  43. Teramoto H, Yoneda A, Puri P (2003) Gene expression of fibroblast growth factors 10 and 7 is downregulated in the lung of nitrofen-induced diaphragmatic hernia in rats. J Pediatr Surg 38:1021–1024

    Article  Google Scholar 

  44. Candilera V, Bouchè C, Schleef J, Pederiva F (2016) Lung growth factors in the amniotic fluid of normal pregnancies and with congenital diaphragmatic hernia. J Matern Fetal Neonatal Med 29(13):2104–2108. https://doi.org/10.3109/14767058.2015.1076387

    Article  CAS  PubMed  Google Scholar 

  45. Oue T, Shima H, Taira Y, Puri P (2000) Administration of antenatal glucocorticoids upregulates peptide growth factor gene expression in nitrofen-induced congenital diaphragmatic hernia in rats. J Pediatr Surg 35:109–112

    Article  CAS  Google Scholar 

  46. Boucherat O, Benachi A, Chailley-Heu B, Franco-Montoya M-L, Elie C, Martinovic J, Bourbon JR (2007) Surfactant maturation is not delayed in human fetuses with diaphragmatic hernia. PLoS Med 4:e237. https://doi.org/10.1371/journal.pmed.0040237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takahashi H, Friedmacher F, Fujiwara N, Hofmann A, Puri P (2014) Pulmonary FGF9 gene expression is downregulated during the pseudoglandular stage in nitrofen-induced hypoplastic lungs. Eur J Pediatr Surg Off J Austrian Assoc Pediatr Surg Al Z Kinderchir 24:75–78. https://doi.org/10.1055/s-0033-1351392

    Article  Google Scholar 

  48. Takahashi H, Friedmacher F, Fujiwara N, Hofmann A, Kutasy B, Gosemann J-H, Puri P (2013) Pulmonary FGF-18 gene expression is downregulated during the canalicular-saccular stages in nitrofen-induced hypoplastic lungs. Pediatr Surg Int 29:1199–1203. https://doi.org/10.1007/s00383-013-3387-4

    Article  PubMed  Google Scholar 

  49. Boucherat O, Benachi A, Barlier-Mur A-M, Franco-Montoya M-L, Martinovic J, Thébaud B, Chailley-Heu B, Bourbon JR (2007) Decreased lung fibroblast growth factor 18 and elastin in human congenital diaphragmatic hernia and animal models. Am J Respir Crit Care Med 175:1066–1077. https://doi.org/10.1164/rccm.200601-050OC

    Article  CAS  PubMed  Google Scholar 

  50. Burgos CM, Uggla AR, Fagerström-Billai F, Eklöf A-C, Frenckner B, Nord M (2010) Gene expression analysis in hypoplastic lungs in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 45:1445–1454. https://doi.org/10.1016/j.jpedsurg.2009.09.023

    Article  PubMed  Google Scholar 

  51. Friedmacher F, Doi T, Gosemann J-H, Fujiwara N, Kutasy B, Puri P (2012) Upregulation of fibroblast growth factor receptor 2 and 3 in the late stages of fetal lung development in the nitrofen rat model. Pediatr Surg Int 28:195–199. https://doi.org/10.1007/s00383-011-2985-2

    Article  PubMed  Google Scholar 

  52. Friedmacher F, Gosemann J-H, Takahashi H, Corcionivoschi N, Puri P (2013) Decreased pulmonary c-Cbl expression and tyrosine phosphorylation in the nitrofen-induced rat model of congenital diaphragmatic hernia. Pediatr Surg Int 29:19–24. https://doi.org/10.1007/s00383-012-3191-6

    Article  PubMed  Google Scholar 

  53. Friedmacher F, Gosemann J-H, Fujiwara N, Alvarez LAJ, Corcionivoschi N, Puri P (2013) Spatiotemporal alterations in Sprouty-2 expression and tyrosine phosphorylation in nitrofen-induced pulmonary hypoplasia. J Pediatr Surg 48:2219–2225. https://doi.org/10.1016/j.jpedsurg.2013.07.003

    Article  PubMed  Google Scholar 

  54. Friedmacher F, Gosemann J-H, Fujiwara N, Takahashi H, Hofmann A, Puri P (2013) Expression of Sproutys and SPREDs is decreased during lung branching morphogenesis in nitrofen-induced pulmonary hypoplasia. Pediatr Surg Int 29:1193–1198. https://doi.org/10.1007/s00383-013-3385-6

    Article  PubMed  Google Scholar 

  55. Thompson SM, Connell MG, van Kuppevelt TH, Xu R, Turnbull JE, Losty PD, Fernig DG, Jesudason EC (2011) Structure and epitope distribution of heparan sulfate is disrupted in experimental lung hypoplasia: a glycobiological epigenetic cause for malformation? BMC Dev Biol 11:38. https://doi.org/10.1186/1471-213X-11-38

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kling DE, Narra V, Islam S, Kinane TB, Alessandrini A, Ercolani L, Donahoe PK, Schnitzer JJ (2001) Decreased mitogen activated protein kinase activities in congenital diaphragmatic hernia-associated pulmonary hypoplasia. J Pediatr Surg 36:1490–1496

    Article  CAS  Google Scholar 

  57. Doi T, Sugimoto K, Ruttenstock E, Dingemann J, Puri P (2010) Prenatal retinoic acid upregulates pulmonary gene expression of PI3K and AKT in nitrofen-induced pulmonary hypoplasia. Pediatr Surg Int 26:1011–1015. https://doi.org/10.1007/s00383-010-2654-x

    Article  PubMed  Google Scholar 

  58. Takahashi T, Friedmacher F, Takahashi H, Daniel Hofmann A, Puri P (2015) Lysyl oxidase expression is decreased in the developing diaphragm and lungs of nitrofen-induced congenital diaphragmatic hernia. Eur J Pediatr Surg Off J Austrian Assoc Pediatr Surg Al Z Kinderchir 25:15–19. https://doi.org/10.1055/s-0034-1386644

    Article  Google Scholar 

  59. Takayasu H, Nakazawa N, Montedonico S, Puri P (2007) Down-regulation of Wnt signal pathway in nitrofen-induced hypoplastic lung. J Pediatr Surg 42:426–430. https://doi.org/10.1016/j.jpedsurg.2006.10.018

    Article  PubMed  Google Scholar 

  60. Makanga M, Dewachter C, Maruyama H, Vuckovic A, Rondelet B, Naeije R, Dewachter L (2013) Downregulated bone morphogenetic protein signaling in nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 29:823–834. https://doi.org/10.1007/s00383-013-3340-6

    Article  PubMed  Google Scholar 

  61. Gosemann J-H, Friedmacher F, Fujiwara N, Alvarez LAJ, Corcionivoschi N, Puri P (2013) Disruption of the bone morphogenetic protein receptor 2 pathway in nitrofen-induced congenital diaphragmatic hernia. Birth Defects Res B Dev Reprod Toxicol 98:304–309. https://doi.org/10.1002/bdrb.21065

    Article  CAS  PubMed  Google Scholar 

  62. Takahashi T, Zimmer J, Friedmacher F, Puri P (2017) Follistatin-like 1 expression is decreased in the alveolar epithelium of hypoplastic rat lungs with nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 52:706–709. https://doi.org/10.1016/j.jpedsurg.2017.01.020

    Article  PubMed  Google Scholar 

  63. Fujiwara N, Doi T, Gosemann J-H, Kutasy B, Friedmacher F, Puri P (2012) Smad1 and WIF1 genes are downregulated during saccular stage of lung development in the nitrofen rat model. Pediatr Surg Int 28:189–193. https://doi.org/10.1007/s00383-011-2987-0

    Article  PubMed  Google Scholar 

  64. Takahashi T, Friedmacher F, Zimmer J, Puri P (2017) Expression of T-box transcription factors 2, 4 and 5 is decreased in the branching airway mesenchyme of nitrofen-induced hypoplastic lungs. Pediatr Surg Int 33:139–143. https://doi.org/10.1007/s00383-016-4005-z

    Article  PubMed  Google Scholar 

  65. Unger S, Copland I, Tibboel D, Post M (2003) Down-regulation of sonic hedgehog expression in pulmonary hypoplasia is associated with congenital diaphragmatic hernia. Am J Pathol 162:547–555. https://doi.org/10.1016/S0002-9440(10)63848-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Takahashi T, Friedmacher F, Takahashi H, Hofmann AD, Puri P (2015) Kif7 expression is decreased in the diaphragmatic and pulmonary mesenchyme of nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 50:904–907. https://doi.org/10.1016/j.jpedsurg.2015.03.058

    Article  PubMed  Google Scholar 

  67. Zimmer J, Takahashi T, Hofmann AD, Puri P (2016) Downregulation of Forkhead box F1 gene expression in the pulmonary vasculature of nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 32:1121–1126. https://doi.org/10.1007/s00383-016-3967-1

    Article  CAS  PubMed  Google Scholar 

  68. Doi T, Puri P (2009) Up-regulation of Wnt5a gene expression in the nitrofen-induced hypoplastic lung. J Pediatr Surg 44:2302–2306. https://doi.org/10.1016/j.jpedsurg.2009.07.069

    Article  PubMed  Google Scholar 

  69. Takahashi T, Friedmacher F, Zimmer J, Puri P (2018) Gata-6 expression is decreased in diaphragmatic and pulmonary mesenchyme of fetal rats with nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 34:315–321. https://doi.org/10.1007/s00383-017-4219-8

    Article  PubMed  Google Scholar 

  70. Nakazawa N, Montedonico S, Takayasu H, Paradisi F, Puri P (2007) Disturbance of retinol transportation causes nitrofen-induced hypoplastic lung. J Pediatr Surg 42:345–349. https://doi.org/10.1016/j.jpedsurg.2006.10.028

    Article  PubMed  Google Scholar 

  71. Major D, Cadenas M, Fournier L, Leclerc S, Lefebvre M, Cloutier R (1998) Retinol status of newborn infants with congenital diaphragmatic hernia. Pediatr Surg Int 13:547–549. https://doi.org/10.1007/s003830050399

    Article  CAS  PubMed  Google Scholar 

  72. Beurskens LWJE, Tibboel D, Lindemans J, Duvekot JJ, Cohen-Overbeek TE, Veenma DCM, de Klein A, Greer JJ, Steegers-Theunissen RPM (2010) Retinol status of newborn infants is associated with congenital diaphragmatic hernia. Pediatrics 126:712–720. https://doi.org/10.1542/peds.2010-0521

    Article  PubMed  Google Scholar 

  73. Kutasy B, Friedmacher F, Duess JW, Puri P (2014) Prenatal administration of retinoic acid increases the trophoblastic insulin-like growth factor 2 protein expression in the nitrofen model of congenital diaphragmatic hernia. Pediatr Surg Int 30:137–142. https://doi.org/10.1007/s00383-013-3449-7

    Article  PubMed  Google Scholar 

  74. Coste K, Beurskens LWJE, Blanc P, Gallot D, Delabaere A, Blanchon L, Tibboel D, Labbé A, Rottier RJ, Sapin V (2015) Metabolic disturbances of the vitamin A pathway in human diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 308:L147–L157. https://doi.org/10.1152/ajplung.00108.2014

    Article  CAS  PubMed  Google Scholar 

  75. Pereira-Terra P, Moura RS, Nogueira-Silva C, Correia-Pinto J (2015) Neuroendocrine factors regulate retinoic acid receptors in normal and hypoplastic lung development. J Physiol 593:3301–3311. https://doi.org/10.1113/JP270477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakazawa N, Takayasu H, Montedonico S, Puri P (2007) Altered regulation of retinoic acid synthesis in nitrofen-induced hypoplastic lung. Pediatr Surg Int 23:391–396. https://doi.org/10.1007/s00383-006-1848-8

    Article  PubMed  Google Scholar 

  77. Kutasy B, Friedmacher F, Pes L, Paradisi F, Puri P (2014) Increased uptake of dietary retinoids at the maternal-fetal barrier in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 49:866–870. https://doi.org/10.1016/j.jpedsurg.2014.01.014

    Article  PubMed  Google Scholar 

  78. Doi T, Sugimoto K, Puri P (2009) Up-regulation of COUP-TFII gene expression in the nitrofen-induced hypoplastic lung. J Pediatr Surg 44:321–324. https://doi.org/10.1016/j.jpedsurg.2008.10.079

    Article  PubMed  Google Scholar 

  79. Doi T, Shintaku M, Dingemann J, Ruttenstock E, Puri P (2011) Downregulation of Midkine gene expression and its response to retinoic acid treatment in the nitrofen-induced hypoplastic lung. Pediatr Surg Int 27:199–204. https://doi.org/10.1007/s00383-010-2773-4

    Article  PubMed  Google Scholar 

  80. Ruttenstock EM, Doi T, Dingemann J, Puri P (2011) Prenatal retinoic acid treatment upregulates late gestation lung protein 1 in the nitrofen-induced hypoplastic lung in late gestation. Pediatr Surg Int 27:125–129. https://doi.org/10.1007/s00383-010-2783-2

    Article  PubMed  Google Scholar 

  81. Oue T, Taira Y, Shima H, Miyazaki E, Puri P (1999) Effect of antenatal glucocorticoid administration on insulin-like growth factor I and II levels in hypoplastic lung in nitrofen-induced congenital diaphragmatic hernia in rats. Pediatr Surg Int 15:175–179

    Article  CAS  Google Scholar 

  82. Miyazaki E, Ohshiro K, Taira Y, Puri P (1998) Altered insulin-like growth factor I mRNA expression in human hypoplastic lung in congenital diaphragmatic hernia. J Pediatr Surg 33:1476–1479

    Article  CAS  Google Scholar 

  83. Ruttenstock E, Doi T, Dingemann J, Puri P (2010) Insulinlike growth factor receptor type 1 and type 2 are downregulated in the nitrofen-induced hypoplastic lung. J Pediatr Surg 45:1349–1353. https://doi.org/10.1016/j.jpedsurg.2010.02.111

    Article  PubMed  Google Scholar 

  84. Ruttenstock E, Doi T, Dingemann J, Puri P (2010) Insulin receptor is downregulated in the nitrofen-induced hypoplastic lung. J Pediatr Surg 45:948–952. https://doi.org/10.1016/j.jpedsurg.2010.02.018

    Article  PubMed  Google Scholar 

  85. Ruttenstock E, Doi T, Dingemann J, Puri P (2010) Downregulation of insulin-like growth factor binding protein 3 and 5 in nitrofen-induced pulmonary hypoplasia. Pediatr Surg Int 26:59–63. https://doi.org/10.1007/s00383-009-2509-5

    Article  PubMed  Google Scholar 

  86. Ruttenstock EM, Doi T, Dingemann J, Puri P (2011) IGFBP-4 gene overexpression in the nitrofen-induced hypoplastic lung. Eur J Pediatr Surg Off J Austrian Assoc Pediatr Surg Al Z Kinderchir 21:42–45. https://doi.org/10.1055/s-0030-1262851

    Article  CAS  Google Scholar 

  87. Mižíková I, Palumbo F, Tábi T, Herold S, Vadász I, Mayer K, Seeger W, Morty RE (2017) Perturbations to lysyl oxidase expression broadly influence the transcriptome of lung fibroblasts. Physiol Genom 49:416–429. https://doi.org/10.1152/physiolgenomics.00026.2017

    Article  CAS  Google Scholar 

  88. Chailley-Heu B, Boucherat O, Barlier-Mur A-M, Bourbon JR (2005) FGF-18 is upregulated in the postnatal rat lung and enhances elastogenesis in myofibroblasts. Am J Physiol Lung Cell Mol Physiol 288:L43–L51. https://doi.org/10.1152/ajplung.00096.2004

    Article  CAS  PubMed  Google Scholar 

  89. Kugler MC, Joyner AL, Loomis CA, Munger JS (2015) Sonic hedgehog signaling in the lung. From development to disease. Am J Respir Cell Mol Biol 52:1–13. https://doi.org/10.1165/rcmb.2014-0132TR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ho UY, Wainwright BJ (2017) Patched1 patterns fibroblast growth factor 10 and Forkhead box F1 expression during pulmonary branch formation. Mech Dev 147:37–48. https://doi.org/10.1016/j.mod.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  91. Weidenfeld J, Shu W, Zhang L, Millar SE, Morrisey EE (2002) The WNT7b promoter is regulated by TTF-1, GATA6, and Foxa2 in lung epithelium. J Biol Chem 277:21061–21070. https://doi.org/10.1074/jbc.M111702200

    Article  CAS  PubMed  Google Scholar 

  92. Keijzer R, van Tuyl M, Meijers C, Post M, Tibboel D, Grosveld F, Koutsourakis M (2001) The transcription factor GATA6 is essential for branching morphogenesis and epithelial cell differentiation during fetal pulmonary development. Dev Camb Engl 128:503–511

    CAS  Google Scholar 

  93. Wilson JG, Roth CB, Warkany J (1953) An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am J Anat 92:189–217. https://doi.org/10.1002/aja.1000920202

    Article  CAS  PubMed  Google Scholar 

  94. Thébaud B, Tibboel D, Rambaud C, Mercier JC, Bourbon JR, Dinh-Xuan AT, Archer SL (1999) Vitamin A decreases the incidence and severity of nitrofen-induced congenital diaphragmatic hernia in rats. Am J Physiol 277:L423–L429

    PubMed  Google Scholar 

  95. Babiuk RP, Thébaud B, Greer JJ (2004) Reductions in the incidence of nitrofen-induced diaphragmatic hernia by vitamin A and retinoic acid. Am J Physiol Lung Cell Mol Physiol 286:L970–L973. https://doi.org/10.1152/ajplung.00403.2003

    Article  CAS  PubMed  Google Scholar 

  96. Takahashi YI, Smith JE, Goodman DS (1977) Vitamin A and retinol-binding protein metabolism during fetal development in the rat. Am J Physiol Endocrinol Metab 233:E263. https://doi.org/10.1152/ajpendo.1977.233.4.E263

    Article  CAS  Google Scholar 

  97. Greer JJ, Babiuk RP, Thebaud B (2003) Etiology of congenital diaphragmatic hernia: the retinoid hypothesis. Pediatr Res 53:726–730. https://doi.org/10.1203/01.PDR.0000062660.12769.E6

    Article  CAS  PubMed  Google Scholar 

  98. Mey J, Babiuk RP, Clugston R, Zhang W, Greer JJ (2003) Retinal dehydrogenase-2 is inhibited by compounds that induce congenital diaphragmatic hernias in rodents. Am J Pathol 162:673–679. https://doi.org/10.1016/S0002-9440(10)63861-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Manson JM (1986) Mechanism of nitrofen teratogenesis. Environ Health Perspect 70:137–147

    Article  CAS  Google Scholar 

  100. Toriyama K, Muramatsu H, Hoshino T, Torii S, Muramatsu T (1997) Evaluation of heparin-binding growth factors in rescuing morphogenesis of heparitinase-treated mouse embryonic lung explants. Differ Res Biol Divers 61:161–167. https://doi.org/10.1046/j.1432-0436.1997.6130161.x

    Article  CAS  Google Scholar 

  101. Zhang H, Garber SJ, Cui Z, Foley JP, Mohan GS, Jobanputra M, Kaplan F, Sweezey NB, Gonzales LW, Savani RC (2009) The angiogenic factor midkine is regulated by dexamethasone and retinoic acid during alveolarization and in alveolar epithelial cells. Respir Res 10:77. https://doi.org/10.1186/1465-9921-10-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Masumoto K, Teshiba R, Esumi G, Nagata K, Takahata Y, Hikino S, Hara T, Hojo S, Tsukimori K, Wake N, Kinukawa N, Taguchi T (2009) Improvement in the outcome of patients with antenatally diagnosed congenital diaphragmatic hernia using gentle ventilation and circulatory stabilization. Pediatr Surg Int 25:487–492. https://doi.org/10.1007/s00383-009-2370-6

    Article  PubMed  Google Scholar 

  103. Ruttenstock E, Doi T, Dingemann J, Puri P (2011) Prenatal administration of retinoic acid upregulates insulin-like growth factor receptors in the nitrofen-induced hypoplastic lung. Birth Defects Res B Dev Reprod Toxicol 92:148–151. https://doi.org/10.1002/bdrb.20293

    Article  CAS  PubMed  Google Scholar 

  104. Price WA (1999) Peptide growth factors regulate insulin-like growth factor binding protein production by fetal rat lung fibroblasts. Am J Respir Cell Mol Biol 20:332–341. https://doi.org/10.1165/ajrcmb.20.2.3304

    Article  CAS  PubMed  Google Scholar 

  105. Santos M, Nogueira-Silva C, Baptista MJ, Soares-Fernandes J, Moura RS, Correia-Pinto J (2007) Pulmonary epithelial cell differentiation in the nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 42:1231–1237. https://doi.org/10.1016/j.jpedsurg.2007.02.014

    Article  PubMed  Google Scholar 

  106. IJsselstijn H, Perrin DG, de Jongste JC, Cutz E, Tibboel D (1995) Pulmonary neuroendocrine cells in neonatal rats with congenital diaphragmatic hernia. J Pediatr Surg 30:413–415

    Article  CAS  Google Scholar 

  107. Yamataka T, Puri P (1996) Increased intracellular levels of calcitonin gene-related peptide-like immunoreactivity in pulmonary endocrine cells in an experimental model of congenital diaphragmatic hernia. Pediatr Surg Int 11:448–452. https://doi.org/10.1007/BF00180080

    Article  CAS  PubMed  Google Scholar 

  108. IJsselstijn H, Hung N, de Jongste JC, Tibboel D, Cutz E (1998) Calcitonin gene-related peptide expression is altered in pulmonary neuroendocrine cells in developing lungs of rats with congenital diaphragmatic hernia. Am J Respir Cell Mol Biol 19:278–285. https://doi.org/10.1165/ajrcmb.19.2.2853

    Article  CAS  PubMed  Google Scholar 

  109. Gosney JR, Okoye BO, Lloyd DA, Losty PD (1999) Pulmonary neuroendocrine cells in nitrofen-induced diaphragmatic hernia and the effect of prenatal glucocorticoids. Pediatr Surg Int 15:180–183

    Article  CAS  Google Scholar 

  110. Santos M, Bastos P, Gonzaga S, Roriz J-M, Baptista MJ, Nogueira-Silva C, Melo-Rocha G, Henriques-Coelho T, Roncon-Albuquerque R, Leite-Moreira AF, De Krijger RR, Tibboel D, Rottier R, Correia-Pinto J (2006) Ghrelin expression in human and rat fetal lungs and the effect of ghrelin administration in nitrofen-induced congenital diaphragmatic hernia. Pediatr Res 59:531–537. https://doi.org/10.1203/01.pdr.0000202748.66359.a9

    Article  CAS  PubMed  Google Scholar 

  111. Asabe K, Tsuji K, Handa N, Kajiwara M, Suita S (1999) Immunohistochemical distribution of bombesin-positive pulmonary neuroendocrine cells in a congenital diaphragmatic hernia. Surg Today 29:407–412. https://doi.org/10.1007/BF02483031

    Article  CAS  PubMed  Google Scholar 

  112. Ijsselstijn H, Gaillard JL, de Jongste JC, Tibboel D, Cutz E (1997) Abnormal expression of pulmonary bombesin-like peptide immunostaining cells in infants with congenital diaphragmatic hernia. Pediatr Res 42:715–720. https://doi.org/10.1203/00006450-199711000-00026

    Article  CAS  PubMed  Google Scholar 

  113. Takayasu H, Nakazawa N, Montedonico S, Puri P (2007) Reduced expression of aquaporin 5 water channel in nitrofen-induced hypoplastic lung with congenital diaphragmatic hernia rat model. J Pediatr Surg 42:415–419. https://doi.org/10.1016/j.jpedsurg.2006.10.029

    Article  PubMed  Google Scholar 

  114. Takayasu H, Nakazawa N, Montedonico S, Sugimoto K, Sato H, Puri P (2007) Impaired alveolar epithelial cell differentiation in the hypoplastic lung in nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 23:405–410. https://doi.org/10.1007/s00383-006-1853-y

    Article  PubMed  Google Scholar 

  115. Sugimoto K, Takayasu H, Nakazawa N, Montedonico S, Puri P (2008) Prenatal treatment with retinoic acid accelerates type 1 alveolar cell proliferation of the hypoplastic lung in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 43:367–372. https://doi.org/10.1016/j.jpedsurg.2007.10.050

    Article  PubMed  Google Scholar 

  116. Tovar JA, Qi B, Diez-Pardo JA, Alfonso LF, Arnaiz A, Alvarez FJ, Valls-i-Soler A, Morreale de Escobar G (1997) Thyroid hormones in the pathogenesis of lung hypoplasia and immaturity induced in fetal rats by prenatal exposure to nitrofen. J Pediatr Surg 32:1295–1297

    Article  CAS  Google Scholar 

  117. Teramoto H, Guarino N, Puri P (2001) Altered gene level expression of thyroid hormone receptors alpha-1 and beta-1 in the lung of nitrofen-induced diaphragmatic hernia. J Pediatr Surg 36:1675–1678. https://doi.org/10.1053/jpsu.2001.27958

    Article  CAS  PubMed  Google Scholar 

  118. Lukošiūtė A, Doi T, Dingemann J, Ruttenstock EM, Puri P (2011) Down-regulation of lung Kruppel-like factor in the nitrofen-induced hypoplastic lung. Eur J Pediatr Surg Off J Austrian Assoc Pediatr Surg Al Z Kinderchir 21:38–41. https://doi.org/10.1055/s-0030-1262800

    Article  Google Scholar 

  119. Ruttenstock EM, Doi T, Dingemann J, Puri P (2012) Prenatal retinoic acid upregulates connexin 43 (Cx43) gene expression in pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia rat model. J Pediatr Surg 47:336–340. https://doi.org/10.1016/j.jpedsurg.2011.11.026

    Article  PubMed  Google Scholar 

  120. Ringman A, Zelenina M, Eklöf A-C, Aperia A, Frenckner B (2008) NKCC-1 and ENaC are down-regulated in nitrofen-induced hypoplastic lungs with congenital diaphragmatic hernia. Pediatr Surg Int 24:993–1000. https://doi.org/10.1007/s00383-008-2209-6

    Article  PubMed  Google Scholar 

  121. Losada A, Tovar JA, Xia HM, Diez-Pardo JA, Santisteban P (2000) Down-regulation of thyroid transcription factor-1 gene expression in fetal lung hypoplasia is restored by glucocorticoids. Endocrinology 141:2166–2173. https://doi.org/10.1210/endo.141.6.7522

    Article  CAS  PubMed  Google Scholar 

  122. Losada A, Xia H, Migliazza L, Diez-Pardo JA, Santisteban P, Tovar JA (1999) Lung hypoplasia caused by nitrofen is mediated by down-regulation of thyroid transcription factor TTF-1. Pediatr Surg Int 15:188–191

    Article  CAS  Google Scholar 

  123. Gonzalez-Reyes S, Martinez L, Martinez-Calonge W, Fernandez-Dumont V, Tovar JA (2006) Effects of antioxidant vitamins on molecular regulators involved in lung hypoplasia induced by nitrofen. J Pediatr Surg 41:1446–1452. https://doi.org/10.1016/j.jpedsurg.2006.04.022

    Article  PubMed  Google Scholar 

  124. Hösgör M, Ijzendoorn Y, Mooi WJ, Tibboel D, De Krijger RR (2002) Thyroid transcription factor-1 expression during normal human lung development and in patients with congenital diaphragmatic hernia. J Pediatr Surg 37:1258–1262

    Article  Google Scholar 

  125. Mysore MR, Margraf LR, Jaramillo MA, Breed DR, Chau VL, Arévalo M, Moya FR (1998) Surfactant protein A is decreased in a rat model of congenital diaphragmatic hernia. Am J Respir Crit Care Med 157:654–657. https://doi.org/10.1164/ajrccm.157.2.9612072

    Article  CAS  PubMed  Google Scholar 

  126. Shima H, Guarino N, Puri P (2000) Effect of hyperoxia on surfactant protein gene expression in hypoplastic lung in nitrofen-induced diaphragmatic hernia in rats. Pediatr Surg Int 16:473–477. https://doi.org/10.1007/s003830000427

    Article  CAS  PubMed  Google Scholar 

  127. Van Tuyl M, Blommaart P, Keijzer E, Wert R, Ruijter SE, Lamers JM, Tibboel WH D (2003) Pulmonary surfactant protein A, B, and C mRNA and protein expression in the nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr Res 54:641–652. https://doi.org/10.1203/01.PDR.0000086906.19683.42

    Article  CAS  PubMed  Google Scholar 

  128. Guilbert TW, Gebb SA, Shannon JM (2000) Lung hypoplasia in the nitrofen model of congenital diaphragmatic hernia occurs early in development. Am J Physiol Lung Cell Mol Physiol 279:L1159–L1171. https://doi.org/10.1152/ajplung.2000.279.6.L1159

    Article  CAS  PubMed  Google Scholar 

  129. Fox ZD, Jiang G, Ho KKY, Walker KA, Liu AP, Kunisaki SM (2018) Fetal lung transcriptome patterns in an ex vivo compression model of diaphragmatic hernia. J Surg Res 231:411–420. https://doi.org/10.1016/j.jss.2018.06.064

    Article  CAS  PubMed  Google Scholar 

  130. Guarino N, Oue T, Shima H, Puri P (2000) Antenatal dexamethasone enhances surfactant protein synthesis in the hypoplastic lung of nitrofen-induced diaphragmatic hernia in rats. J Pediatr Surg 35:1468–1473. https://doi.org/10.1053/jpsu.2000.16416

    Article  CAS  PubMed  Google Scholar 

  131. Cogo PE, Simonato M, Danhaive O, Verlato G, Cobellis G, Savignoni F, Peca D, Baritussio A, Carnielli VP (2013) Impaired surfactant protein B synthesis in infants with congenital diaphragmatic hernia. Eur Respir J 41:677–682. https://doi.org/10.1183/09031936.00032212

    Article  CAS  PubMed  Google Scholar 

  132. Thébaud B, Barlier-Mur AM, Chailley-Heu B, Henrion-Caude A, Tibboel D, Dinh-Xuan AT, Bourbon JR (2001) Restoring effects of vitamin A on surfactant synthesis in nitrofen-induced congenital diaphragmatic hernia in rats. Am J Respir Crit Care Med 164:1083–1089. https://doi.org/10.1164/ajrccm.164.6.2010115

    Article  PubMed  Google Scholar 

  133. Janssen DJ, Zimmermann LJ, Cogo P, Hamvas A, Bohlin K, Luijendijk IH, Wattimena D, Carnielli VP, Tibboel D (2009) Decreased surfactant phosphatidylcholine synthesis in neonates with congenital diaphragmatic hernia during extracorporeal membrane oxygenation. Intensive Care Med 35:1754–1760. https://doi.org/10.1007/s00134-009-1564-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. IJsselstijn H, Zimmermann LJ, Bunt JE, de Jongste JC, Tibboel D (1998) Prospective evaluation of surfactant composition in bronchoalveolar lavage fluid of infants with congenital diaphragmatic hernia and of age-matched controls. Crit Care Med 26:573–580

    Article  CAS  Google Scholar 

  135. Shima H, Ohshiro K, Taira Y, Miyazaki E, Oue T, Puri P (1999) Antenatal dexamethasone suppresses tumor necrosis factor-alpha expression in hypoplastic lung in nitrofen-induced diaphragmatic hernia in rats. Pediatr Res 46:633–637. https://doi.org/10.1203/00006450-199911000-00023

    Article  CAS  PubMed  Google Scholar 

  136. Ohshiro K, Miyazaki E, Taira Y, Puri P (1998) Upregulated tumor necrosis factor-alpha gene expression in the hypoplastic lung in patients with congenital diaphragmatic hernia. Pediatr Surg Int 14:21–24

    Article  CAS  Google Scholar 

  137. Schaible T, Veit M, Tautz J, Kehl S, Büsing K, Monz D, Gortner L, Tutdibi E (2011) Serum cytokine levels in neonates with congenital diaphragmatic hernia. Klin Padiatr 223:414–418. https://doi.org/10.1055/s-0031-1295436

    Article  CAS  PubMed  Google Scholar 

  138. Guarino N, Solari V, Shima H, Puri P (2004) Upregulated expression of EGF and TGF-alpha in the proximal respiratory epithelium in the human hypoplastic lung in congenital diaphragmatic hernia. Pediatr Surg Int 19:755–759. https://doi.org/10.1007/s00383-003-1052-z

    Article  PubMed  Google Scholar 

  139. Kakiashvili E, Dan Q, Vandermeer M, Zhang Y, Waheed F, Pham M, Szászi K (2011) The epidermal growth factor receptor mediates tumor necrosis factor-alpha-induced activation of the ERK/GEF-H1/RhoA pathway in tubular epithelium. J Biol Chem 286:9268–9279. https://doi.org/10.1074/jbc.M110.179903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang Y, Huang Z, Nayak PS, Matthews BD, Warburton D, Shi W, Sanchez-Esteban J (2013) Strain-induced differentiation of fetal type II epithelial cells is mediated via the integrin α6β1-ADAM17/tumor necrosis factor-α-converting enzyme (TACE) signaling pathway. J Biol Chem 288:25646–25657. https://doi.org/10.1074/jbc.M113.473777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Towne JE, Krane CM, Bachurski CJ, Menon AG (2001) Tumor necrosis factor-alpha inhibits aquaporin 5 expression in mouse lung epithelial cells. J Biol Chem 276:18657–18664. https://doi.org/10.1074/jbc.M100322200

    Article  CAS  PubMed  Google Scholar 

  142. Candilera V, Bouchè C, Schleef J, Pederiva F (2016) Lung growth factors in the amniotic fluid of normal pregnancies and with congenital diaphragmatic hernia. J Matern Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet 29:2104–2108. https://doi.org/10.3109/14767058.2015.1076387

    Article  CAS  Google Scholar 

  143. Fleck S, Bautista G, Keating SM, Lee T-H, Keller RL, Moon-Grady AJ, Gonzales K, Norris PJ, Busch MP, Kim CJ, Romero R, Lee H, Miniati D, MacKenzie TC (2013) Fetal production of growth factors and inflammatory mediators predicts pulmonary hypertension in congenital diaphragmatic hernia. Pediatr Res 74:290–298. https://doi.org/10.1038/pr.2013.98

    Article  PubMed  PubMed Central  Google Scholar 

  144. Friedmacher F, Hofmann AD, Takahashi H, Takahashi T, Gosemann J-H, Puri P (2014) Disruption of THY-1 signaling in alveolar lipofibroblasts in experimentally induced congenital diaphragmatic hernia. Pediatr Surg Int 30:129–135. https://doi.org/10.1007/s00383-013-3444-z

    Article  PubMed  Google Scholar 

  145. Friedmacher F, Fujiwara N, Hofmann AD, Takahashi H, Alvarez LAJ, Gosemann J-H, Puri P (2014) Prenatal retinoic acid increases lipofibroblast expression in hypoplastic rat lungs with experimental congenital diaphragmatic hernia. J Pediatr Surg 49:876–881. https://doi.org/10.1016/j.jpedsurg.2014.01.017 (discussion 881)

    Article  PubMed  Google Scholar 

  146. Gosemann J-H, Doi T, Kutasy B, Friedmacher F, Dingemann J, Puri P (2012) Alterations of peroxisome proliferator-activated receptor γ and monocyte chemoattractant protein 1 gene expression in the nitrofen-induced hypoplastic lung. J Pediatr Surg 47:847–851. https://doi.org/10.1016/j.jpedsurg.2012.01.038

    Article  PubMed  Google Scholar 

  147. Doi T, Lukosiūte A, Ruttenstock E, Dingemann J, Puri P (2010) Disturbance of parathyroid hormone-related protein signaling in the nitrofen-induced hypoplastic lung. Pediatr Surg Int 26:45–50. https://doi.org/10.1007/s00383-009-2506-8

    Article  PubMed  Google Scholar 

  148. Carroll JL, McCoy DM, McGowan SE, Salome RG, Ryan AJ, Mallampalli RK (2002) Pulmonary-specific expression of tumor necrosis factor-alpha alters surfactant lipid metabolism. Am J Physiol Lung Cell Mol Physiol 282:L735–L742. https://doi.org/10.1152/ajplung.00120.2001

    Article  CAS  PubMed  Google Scholar 

  149. Okawada M, Kobayashi H, Tei E, Okazaki T, Lane GJ, Yamataka A (2007) Serum monocyte chemotactic protein-1 levels in congenital diaphragmatic hernia. Pediatr Surg Int 23:487–491. https://doi.org/10.1007/s00383-006-1858-6

    Article  PubMed  Google Scholar 

  150. Khoshgoo N, Kholdebarin R, Pereira-Terra P, Mahood TH, Falk L, Day CA, Iwasiow BM, Zhu F, Mulhall D, Fraser C, Correia-Pinto J, Keijzer R (2017) Prenatal microRNA miR-200b therapy improves nitrofen-induced pulmonary hypoplasia associated with congenital diaphragmatic hernia. Ann Surg. https://doi.org/10.1097/SLA.0000000000002595

    Article  Google Scholar 

  151. Santos M, Moura RS, Gonzaga S, Nogueira-Silva C, Ohlmeier S, Correia-Pinto J (2007) Embryonic essential myosin light chain regulates fetal lung development in rats. Am J Respir Cell Mol Biol 37:330–338. https://doi.org/10.1165/rcmb.2006-0349OC

    Article  CAS  PubMed  Google Scholar 

  152. Chen G, Qiao Y, Xiao X, Zheng S, Chen L (2010) Effects of estrogen on lung development in a rat model of diaphragmatic hernia. J Pediatr Surg 45:2340–2345. https://doi.org/10.1016/j.jpedsurg.2010.08.028

    Article  PubMed  Google Scholar 

  153. Xu C, Liu W, Chen Z, Wang Y, Xiong Z, Ji Y (2009) Effect of prenatal tetrandrine administration on transforming growth factor-beta1 level in the lung of nitrofen-induced congenital diaphragmatic hernia rat model. J Pediatr Surg 44:1611–1620. https://doi.org/10.1016/j.jpedsurg.2008.09.021

    Article  PubMed  Google Scholar 

  154. Schaible T, Reineke J, Gortner L, Monz D, Schaffelder R, Tutdibi E (2016) Are cytokines useful biomarkers to determine disease severity in neonates with congenital diaphragmatic hernia? Am J Perinatol 34:648–654. https://doi.org/10.1055/s-0036-1597133

    Article  PubMed  Google Scholar 

  155. Dingemann J, Doi T, Ruttenstock E, Puri P (2010) Abnormal platelet-derived growth factor signaling accounting for lung hypoplasia in experimental congenital diaphragmatic hernia. J Pediatr Surg 45:1989–1994. https://doi.org/10.1016/j.jpedsurg.2010.06.014

    Article  PubMed  Google Scholar 

  156. Gosemann J-H, Friedmacher F, Hunziker M, Alvarez L, Corcionivoschi N, Puri P (2013) Increased activation of NADPH oxidase 4 in the pulmonary vasculature in experimental diaphragmatic hernia. Pediatr Surg Int 29:3–8. https://doi.org/10.1007/s00383-012-3209-0

    Article  PubMed  Google Scholar 

  157. Aras-López R, Tovar JA, Martínez L (2016) Possible role of increased oxidative stress in pulmonary hypertension in experimental diaphragmatic hernia. Pediatr Surg Int 32:141–145. https://doi.org/10.1007/s00383-015-3826-5

    Article  PubMed  Google Scholar 

  158. Cigdem MK, Kizil G, Onen A, Kizil M, Nergiz Y, Celik Y (2010) Is there a role for antioxidants in prevention of pulmonary hypoplasia in nitrofen-induced rat model of congenital diaphragmatic hernia? Pediatr Surg Int 26:401–406. https://doi.org/10.1007/s00383-010-2552-2

    Article  PubMed  Google Scholar 

  159. Hirako S, Tsuda H, Ito F, Okazaki Y, Hirayama T, Nagasawa H, Nakano T, Imai K, Kotani T, Kikkawa F, Toyokuni S (2017) Role of catalytic iron and oxidative stress in nitrofen-induced congenital diaphragmatic hernia and its amelioration by Saireito (TJ-114). J Clin Biochem Nutr 61:176–182. https://doi.org/10.3164/jcbn.17-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sluiter W, Bos AP, Silveri F, Tenbrinck R, Kraakslee R, Tibboel D, Koster JF, Molenaar JC (1992) Nitrofen-induced diaphragmatic hernias in rats: pulmonary antioxidant enzyme activities. Pediatr Res 32:394–398. https://doi.org/10.1203/00006450-199210000-00005

    Article  CAS  PubMed  Google Scholar 

  161. Taira Y, Oue T, Shima H, Miyazaki E, Puri P (1999) Increased tropoelastin and procollagen expression in the lung of nitrofen-induced diaphragmatic hernia in rats. J Pediatr Surg 34:715–719

    Article  CAS  Google Scholar 

  162. Mychaliska GB, Officer SM, Heintz CK, Starcher BC, Pierce RA (2004) Pulmonary elastin expression is decreased in the nitrofen-induced rat model of congenital diaphragmatic hernia. J Pediatr Surg 39:666–671

    Article  Google Scholar 

  163. Takahashi T, Friedmacher F, Zimmer J, Puri P (2018) Decreased expression of integrin subunits α3, α6, and α8 in the branching airway mesenchyme of nitrofen-induced hypoplastic lungs. Eur J Pediatr Surg Off J Austrian Assoc Pediatr Surg Al Z Kinderchir 28:109–114. https://doi.org/10.1055/s-0037-1604022

    Article  Google Scholar 

  164. Burgos CM, Nord M, Roos A, Didon L, Eklöf A-C, Frenckner B (2010) Connective tissue growth factor expression pattern in lung development. Exp Lung Res 36:441–450. https://doi.org/10.3109/01902141003714056

    Article  CAS  PubMed  Google Scholar 

  165. Ruttenstock EM, Doi T, Dingemann J, Puri P (2011) Prenatal administration of retinoic acid upregulates connective tissue growth factor in the nitrofen CDH model. Pediatr Surg Int 27:573–577. https://doi.org/10.1007/s00383-010-2833-9

    Article  PubMed  Google Scholar 

  166. Pereira-Terra P, Kholdebarin R, Higgins M, Iwasiow BM, Correia-Pinto J, Keijzer R (2015) Lower NPAS3 expression during the later stages of abnormal lung development in rat congenital diaphragmatic hernia. Pediatr Surg Int 31:659–663. https://doi.org/10.1007/s00383-015-3703-2

    Article  PubMed  Google Scholar 

  167. Doi T, Hajduk P, Puri P (2009) Upregulation of Slit-2 and Slit-3 gene expressions in the nitrofen-induced hypoplastic lung. J Pediatr Surg 44:2092–2095. https://doi.org/10.1016/j.jpedsurg.2009.02.068

    Article  PubMed  Google Scholar 

  168. Akpinar İ, Korgun D, Çetin A, Yesilkaya A, Karaguzel G, Boneval C, Melikoglu M (2014) Epimorphin expression in a rat model of pulmonary hypoplasia associated with congenital diaphragmatic hernia. Pediatr Surg Int 30:1037–1043. https://doi.org/10.1007/s00383-014-3579-6

    Article  PubMed  Google Scholar 

  169. Friedmacher F, Fujiwara N, Hofmann AD, Takahashi H, Gosemann J-H, Puri P (2014) Evidence for decreased lipofibroblast expression in hypoplastic rat lungs with congenital diaphragmatic hernia. Pediatr Surg Int 30:1023–1029. https://doi.org/10.1007/s00383-014-3549-z

    Article  PubMed  Google Scholar 

  170. Chao C-M, Moiseenko A, Zimmer K-P, Bellusci S (2016) Alveologenesis: key cellular players and fibroblast growth factor 10 signaling. Mol Cell Pediatr. https://doi.org/10.1186/s40348-016-0045-7

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gouveia L, Betsholtz C, Andrae J (2018) PDGF-A signaling is required for secondary alveolar septation and controls epithelial proliferation in the developing lung. Dev Camb Engl. https://doi.org/10.1242/dev.161976

    Article  Google Scholar 

  172. Keijzer R, Liu J, Deimling J, Tibboel D, Post M (2000) Dual-hit hypothesis explains pulmonary hypoplasia in the nitrofen model of congenital diaphragmatic hernia. Am J Pathol 156:1299–1306. https://doi.org/10.1016/S0002-9440(10)65000-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Sickkids start-up funds and by the Canadian Institute of Health Research (CIHR)—SickKids Foundation New Investigator Research Grant (NI18-1270R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Zani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montalva, L., Zani, A. Assessment of the nitrofen model of congenital diaphragmatic hernia and of the dysregulated factors involved in pulmonary hypoplasia. Pediatr Surg Int 35, 41–61 (2019). https://doi.org/10.1007/s00383-018-4375-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-018-4375-5

Keywords

Navigation