Skip to main content

Advertisement

Log in

Causes of the long-term variability of southwestern South America precipitation in the IPSL-CM6A-LR model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Southwestern South America (SWSA) has undergone frequent and persistent droughts in recent decades with severe impacts on water resources, and consequently, on socio-economic activities at a sub-continental scale. The local drying trend in this region has been associated with the expansion of the subtropical drylands over the last decades. It has been shown that SWSA precipitation is linked to large-scale dynamics modulated by internal climate variability and external forcing. This work aims at unravelling the causes of this long-term trend toward dryness in the context of the emerging climate change relying on a large set simulations of the state-of-the-art IPSL-CM6A-LR climate model from the 6th phase of the Coupled Model Intercomparison Project. Our results identify the leading role of dynamical changes induced by external forcings, over the local thermodynamical effects and teleconnections with internal global modes of sea surface temperature. Our findings show that the simulated long-term changes of SWSA precipitation are dominated by externally forced anomalous expansion of the Southern Hemisphere Hadley Cell (HC) and a persistent positive Southern Annular Mode (SAM) trend since the late 1970s. Long-term changes in the HC extent and the SAM show strong co-linearity. They are attributable to stratospheric ozone depletion in austral spring-summer and increased atmospheric greenhouse gases all year round. Future ssp585 and ssp126 scenarios project a dominant role of anthropogenic forcings on the HC expansion and the subsequent SWSA drying, exceeding the threshold of extreme drought due to internal variability as soon as the 2040s, and suggest that these effects will persist until the end of the twenty-first century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Climate 15(16):2205–2231

    Google Scholar 

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HADSLP2): 1850–2004. J Climate 19(22):5816–5842

    Google Scholar 

  • Allen RJ, Kovilakam M (2017) The role of natural climate variability in recent tropical expansion. J Climate 30(16):6329–6350

    Google Scholar 

  • Amaya DJ, Siler N, Xie SP, Miller AJ (2018) The interplay of internal and forced modes of Hadley cell expansion: lessons from the global warming hiatus. Climate Dyn 51(1–2):305–319

    Google Scholar 

  • Andreae MO, Jones CD, Cox PM (2005) Strong present-day aerosol cooling implies a hot future. Nature 435(7046):1187–1190

    Google Scholar 

  • Aumont O, Éthé C, Tagliabue A, Bopp L, Gehlen M (2015) Pisces-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci Model Dev 8(8):2465–2513

    Google Scholar 

  • Barrett BS, Hameed S (2017) Seasonal variability in precipitation in central and southern Chile: modulation by the south Pacific high. J Climate 30(1):55–69

    Google Scholar 

  • Boisier JP, Rondanelli R, Garreaud RD, Muñoz F (2016) Anthropogenic and natural contributions to the southeast Pacific precipitation decline and recent megadrought in central chile. Geophys Res Lett 43(1):413–421

    Google Scholar 

  • Boisier JP, Alvarez-Garretón C, Cordero RR, Damiani A, Gallardo L, Garreaud RD, Lambert F, Ramallo C, Rojas M, Rondanelli R (2018) Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elementa 1000:6. https://doi.org/10.1525/elementa.328

    Article  Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U et al (2013) Clouds and aerosols. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp 571–657

  • Boucher O, Servonnat J, Albright AL, Aumont O, Balkanski Y, Bastrikov V, Bekki S, Bonnet R, Bony S, Bopp L et al (2020) Presentation and evaluation of the IPSL-CM6A-LR climate model. J Adv Model Earth Syst 12(7):e2019MS002010

    Google Scholar 

  • Brubaker KL, Entekhabi D, Eagleson P (1993) Estimation of continental precipitation recycling. J Climate 6(6):1077–1089

    Google Scholar 

  • Butterworth S (1930) On the theory of filter amplifiers. Wirel Eng 7(6):536–541

    Google Scholar 

  • Carslaw K, Lee L, Reddington C, Pringle K, Rap A, Forster P, Mann G, Spracklen D, Woodhouse M, Regayre L et al (2013) Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503(7474):67–71

    Google Scholar 

  • Carvalho LM, Jones C, Ambrizzi T (2005) Opposite phases of the Antarctic oscillation and relationships with intraseasonal to interannual activity in the tropics during the austral summer. J Climate 18(5):702–718

    Google Scholar 

  • Checa-Garcia R, Hegglin MI, Kinnison D, Plummer DA, Shine KP (2018) Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database. Geophys Res Lett 45(7):3264–3273

    Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28

    Google Scholar 

  • CR2 (2015) Report to the nation. the 2010–2015 mega-drought: a lesson for the future. Center for Climate and Resilience Research (CR2) 28

  • Davis N, Davis SM (2018) Reconciling Hadley cell expansion trend estimates in reanalyses. Geophys Res Lett 45(20):11–439

    Google Scholar 

  • Dee D, Balmaseda M, Balsamo G, Engelen R, Simmons A, Thépaut JN (2014) Toward a consistent reanalysis of the climate system. Bull Am Meteorol Soc 95(8):1235–1248

    Google Scholar 

  • d’Orgeval T, Polcher J, Rosnay Pd (2008) Sensitivity of the west African hydrological cycle in orchidee to infiltration processes. Hydrol Earth Syst Sci 12(6):1387–1401

    Google Scholar 

  • Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Climate 10(9):2147–2153

    Google Scholar 

  • Eyring V, Cionni I, Lamarque JF, Akiyoshi H, Bodeker G, Charlton-Perez A, Frith S, Gettelman A, Kinnison D, Nakamura T et al (2010) Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios. Geophys Res Lett 37(16):L16807

    Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (cmip6) experimental design and organization. Geosci Model Dev (Online) 9:LLNL-JRNL-736881

  • Falvey M, Garreaud R (2007) Wintertime precipitation episodes in central chile: Associated meteorological conditions and orographic influences. J Hydrometeorol 8(2):171–193

    Google Scholar 

  • Fogt RL, Marshall GJ (2020) The southern annular mode: variability, trends, and climate impacts across the southern hemisphere. Wiley Interdiscip Rev Climate Change 11(4):e652

    Google Scholar 

  • Fogt RL, Jones JM, Renwick J (2012) Seasonal zonal asymmetries in the southern annular mode and their impact on regional temperature anomalies. J Climate 25(18):6253–6270

    Google Scholar 

  • Folland C, Parker D, Colman A, Washington R (1999) Large scale modes of ocean surface temperature since the late nineteenth century. In: Beyond El Niño. Springer, Berlin, pp 73–102

  • Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large-scale control on the patagonian climate. J Climate 26(1):215–230

    Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day south american climate. Palaeogeogr Palaeoclimatol Palaeoecol 281(3–4):180–195

    Google Scholar 

  • Garreaud RD, Alvarez-Garreton C, Barichivich J, Boisier JP, Christie D, Galleguillos M, LeQuesne C, McPhee J, Zambrano-Bigiarini M (2017) The 2010–2015 megadrought in central chile: impacts on regional hydroclimate and vegetation. Hydrol Earth Syst Sci 21(12):6307–6327

  • Garreaud RD, Boisier JP, Rondanelli R, Montecinos A, Sepúlveda HH, Veloso-Aguila D (2020) The central chile mega drought (2010–2018): a climate dynamics perspective. Int J Climatol 40(1):421–439

    Google Scholar 

  • Gillett NP, Thompson DW (2003) Simulation of recent southern hemisphere climate change. Science 302(5643):273–275

    Google Scholar 

  • Gillett NP, Shiogama H, Funke B, Hegerl G, Knutti R, Matthes K, Santer BD, Stone D, Tebaldi C (2016) The detection and attribution model intercomparison project (DAMIP v1.0) contribution to CMIP6. Geosci Model Dev 9(10):3685–3697

  • Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26(4):459–462

    Google Scholar 

  • Grise KM, Davis SM, Staten PW, Adam O (2018) Regional and seasonal characteristics of the recent expansion of the tropics. J Climate 31(17):6839–6856

    Google Scholar 

  • Grise KM, Davis SM, Simpson IR, Waugh DW, Fu Q, Allen RJ, Rosenlof KH, Ummenhofer CC, Karnauskas KB, Maycock AC et al (2019) Recent tropical expansion: natural variability or forced response? J Climate 32(5):1551–1571

    Google Scholar 

  • Helpd IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Climate 19(21):5686–5699

    Google Scholar 

  • Henley BJ, Gergis J, Karoly DJ, Power S, Kennedy J, Folland CK (2015) A tripole index for the interdecadal pacific oscillation. Climate Dyn 45(11–12):3077–3090

    Google Scholar 

  • Hoesly RM, Smith SJ, Feng L, Klimont Z, Janssens-Maenhout G, Pitkanen T, Seibert JJ, Vu L, Andres RJ, Bolt RM et al (2018) Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the community emissions data system (ceds). Geosci Model Dev 11(1):369–408

    Google Scholar 

  • Hourdin F, Rio C, Grandpeix JY, Madeleine JB, Cheruy F, Rochetin N, Jam A, Musat I, Idelkadi A, Fairhead L et al (2020) LMDZ6A: the atmospheric component of the IPSL climate model with improved and better tuned physics. J Adv Model Earth Syst 12(7):e2019MS001892

  • Hu Y, Zhou C, Liu J (2011) Observational evidence for poleward expansion of the hadley circulation. Adv Atmos Sci 28(1):33–44

    Google Scholar 

  • Hu Y, Tao L, Liu J (2013) Poleward expansion of the hadley circulation in cmip5 simulations. Adv Atmos Sci 30(3):790–795

    Google Scholar 

  • Hu Y, Huang H, Zhou C (2018) Widening and weakening of the hadley circulation under global warming. Sci Bull 63(10):640–644

    Google Scholar 

  • Jebri B, Khodri M, Echevin V, Gastineau G, Thiria S, Vialard J, Lebas N (2020) Contributions of internal variability and external forcing to the recent trends in the southeastern pacific and peru-chile upwelling system. J Climate 33(24):10555–10578

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–472

    Google Scholar 

  • Kim YH, Min SK, Son SW, Choi J (2017) Attribution of the local hadley cell widening in the southern hemisphere. Geophys Res Lett 44(2):1015–1024

    Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34(6):L06805

  • Lurton T, Balkanski Y, Bastrikov V, Bekki S, Bopp L, Braconnot P, Brockmann P, Cadule P, Contoux C, Cozic A et al (2020) Implementation of the cmip6 forcing data in the IPSL-CM6A-LR model. J Adv Model Earth Syst 12(4):e2019MS001940

    Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1080

    Google Scholar 

  • Masiokas M, Cara L, Villalba R, Pitte P, Luckman B, Toum E, Christie D, Le Quesne C, Mauget S (2019) Streamflow variations across the andes (18–55 s) during the instrumental era. Sci Rep 9(1):1–13

    Google Scholar 

  • Masiokas MH, Villalba R, Luckman BH, Mauget S (2010) Intra-to multidecadal variations of snowpack and streamflow records in the andes of chile and argentina between 30 and 37 s. J Hydrometeorol 11(3):822–831

    Google Scholar 

  • Matthes K, Funke B, Anderson M, Barnard L, Beer J, Charbonneau P, Clilverd M, Dudok de Wit T, Haberreiter M, Hendry A, et al. (2017) Solar forcing for cmip6 (v3. 2). Geoscientific Model Development 10(6):2247–2302

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314(5806):1740–1745

  • Meehl GA, Hu A (2006) Megadroughts in the indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J Climate 19(9):1605–1623

    Google Scholar 

  • Meehl GA, Hu A, Santer BD (2009) The mid-1970s climate shift in the pacific and the relative roles of forced versus inherent decadal variability. J Climate 22(3):780–792

    Google Scholar 

  • Meinshausen M, Vogel E, Nauels A, Lorbacher K, Meinshausen N, Etheridge DM, Fraser PJ, Montzka SA, Rayner PJ, Trudinger CM et al (2017) Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci Model Dev 10:2057–2116

    Google Scholar 

  • Meza FJ, Wilks DS, Gurovich L, Bambach N (2012) Impacts of climate change on irrigated agriculture in the Maipo Basin, Chile: reliability of water rights and changes in the demand for irrigation. J Water Resour Plan Manag 138(5):421–430

    Google Scholar 

  • Mohino E, Keenlyside N, Pohlmann H (2016) Decadal prediction of Sahel rainfall: where does the skill (or lack thereof) come from? Climate Dyn 47(11):3593–3612

    Google Scholar 

  • Montecinos A, Aceituno P (2003) Seasonality of the ENSO-related rainfall variability in central chile and associated circulation anomalies. Journal of climate 16(2):281–296

    Google Scholar 

  • Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Di Lorenzo E, Mantua NJ, Miller AJ, Minobe S, Nakamura H et al (2016) The Pacific decadal oscillation, revisited. J Climate 29(12):4399–4427

    Google Scholar 

  • Nguyen H, Evans A, Lucas C, Smith I, Timbal B (2013) The hadley circulation in reanalyses: climatology, variability, and change. J Climate 26(10):3357–3376

    Google Scholar 

  • Norero A, Bonilla CA (1999) Las sequías en chile: Causas, consecuencias y mitigación. Pontífica Universidad Católica de Chile Facultad de agronomía e ingeniería forestal Santiago de Chile, p 128

  • O’Neill BC, Tebaldi C, Vuuren DPv, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque JF, Lowe J et al (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Dev 9(9):3461–3482

  • Oudar T, Kushner PJ, Fyfe JC, Sigmond M (2018) No impact of anthropogenic aerosols on early 21st century global temperature trends in a large initial-condition ensemble. Geophys Res Lett 45(17):9245–9252

    Google Scholar 

  • Pabón-Caicedo JD, Arias PA, Carril AF, Espinoza JC, Goubanova K, Lavado W, Masiokas M, Solman SA, Villalba R (2020) Observed and projected hydroclimate changes in the Andes. Front Earth Sci 8:61

    Google Scholar 

  • Poli P, Hersbach H, Dee DP, Berrisford P, Simmons AJ, Vitart F, Laloyaux P, Tan DG, Peubey C, Thépaut JN et al (2016) Era-20c: an atmospheric reanalysis of the twentieth century. J Climate 29(11):4083–4097

    Google Scholar 

  • Polvani LM, Waugh DW, Correa GJ, Son SW (2011) Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the southern hemisphere. J Climate 24(3):795–812

    Google Scholar 

  • Previdi M, Liepert BG (2007) Annular modes and hadley cell expansion under global warming. Geophys Res Lett 34(22):105

  • Quintana J, Aceituno P (2012) Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30–43°S. Atmósfera 25(1):1–22

  • Rayner N, Parker DE, Horton E, Folland CK, Alexander LV, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108(D14):4407

  • Rivera JA, Arnould G (2020) Evaluation of the ability of CMIP6 models to simulate precipitation over southwestern South America: climatic features and long-term trends (1901–2014). Atmos Res 241:104953

  • Rosegrant MW, Ringler C, McKinney DC, Cai X, Keller A, Donoso G (2000) Integrated economic-hydrologic water modeling at the basin scale: the MAIPO river basin. Agric Econ 24(1):33–46

    Google Scholar 

  • Rousset C, Vancoppenolle M, Madec G, Fichefet T, Flavoni S, Barthélemy A, Benshila R, Chanut J, Lévy C, Masson S et al (2015) The louvain-la-neuve sea ice model LIM3.6: global and regional capabilities. Geosci Model Dev 8(10):2991–3005

  • Rutllant J, Fuenzalida H (1991) Synoptic aspects of the central chile rainfall variability associated with the southern oscillation. Int J Climatol 11(1):63–76

    Google Scholar 

  • Schmidt DF, Grise KM (2017) The response of local precipitation and sea level pressure to Hadley cell expansion. Geophys Res Lett 44(20):10–573

    Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M (2018) GPCC full data monthly product version 2018 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. GPCC Full Data Monthly Product Version 7. https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_050

  • Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Climate 23(17):4651–4668

    Google Scholar 

  • Slivinski LC, Compo GP, Whitaker JS, Sardeshmukh PD, Giese BS, McColl C, Allan R, Yin X, Vose R, Titchner H et al (2019) Towards a more reliable historical reanalysis: improvements for version 3 of the twentieth century reanalysis system. Q J R Meteorol Soc 145(724):2876–2908

    Google Scholar 

  • Smith RB, Evans JP (2007) Orographic precipitation and water vapor fractionation over the southern Andes. J Hydrometeorol 8(1):3–19

    Google Scholar 

  • Staten PW, Rutz JJ, Reichler T, Lu J (2012) Breaking down the tropospheric circulation response by forcing. Climate Dyn 39(9–10):2361–2375

    Google Scholar 

  • Staten PW, Lu J, Grise KM, Davis SM, Birner T (2018) Re-examining tropical expansion. Nat Climate Change 8(9):768–775

    Google Scholar 

  • Staten PW, Grise KM, Davis SM, Karnauskas K, Davis N (2019) Regional widening of tropical overturning: forced change, natural variability, and recent trends. J Geophys Res Atmos 124(12):6104–6119

    Google Scholar 

  • Thomason LW, Ernest N, Millán L, Rieger L, Bourassa A, Vernier JP, Manney G, Luo B, Arfeuille F, Peter T (2018) A global space-based stratospheric aerosol climatology: 1979–2016. Earth Syst Sci Data 10(1):469–492

    Google Scholar 

  • Thompson DW, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Climate 13(5):1000–1016

  • Thompson DW, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation. Part II: trends. J Climate 13(5):1018–1036

  • Ting M, Seager R, Li C, Liu H, Henderson N (2018) Mechanism of future spring drying in the southwestern United States in CMIP5 models. J Climate 31(11):4265–4279

    Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Climate Dyn 9(6):303–319

    Google Scholar 

  • Uppala SM, Kållberg P, Simmons A, Andrae U, Bechtold VDC, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G et al (2005) The era-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012

    Google Scholar 

  • van Marle M, Kloster S, Magi B, Marlon J, Daniau A, Field R, Arneth A, Forrest M, Hantson S, Kehrwald N et al (2017) Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci Model Dev 10:3329–3357. https://doi.org/10.5194/gmd-10-3329-2017

    Article  Google Scholar 

  • Vera CS, Díaz L (2015) Anthropogenic influence on summer precipitation trends over South America in CMIP5 models. Int J Climatol 35(10):3172–3177

    Google Scholar 

  • Viale M, Bianchi E, Cara L, Ruiz LE, Villalba R, Pitte P, Masiokas M, Rivera J, Zalazar L (2019) Contrasting climates at both sides of the Andes in Argentina and Chile. Front Environ Sci 7:69

    Google Scholar 

  • Villamayor J, Ambrizzi T, Mohino E (2018) Influence of decadal sea surface temperature variability on northern Brazil rainfall in CMIP5 simulations. Climate Dyn 51(1–2):563–579

    Google Scholar 

  • Willmott CJ, Matsuura K (2001) Terrestrial air temperature and precipitation: Monthly and annual time series (1950–1999) version 1.02. Center for Climatic Research, University of Delaware, Newark

  • Zelinka MD, Myers TA, McCoy DT, Po-Chedley S, Caldwell PM, Ceppi P, Klein SA, Taylor KE (2020) Causes of higher climate sensitivity in CMIP6 models. Geophys Res Lett 47(1):e2019GL085782

Download references

Acknowledgements

The authors thank editor Dr. Corti and the two anonymous reviewers for their fundamental duty in the publishing process of this paper and their helpful comments. This work was undertaken in the framework of the THEMES project under the BNP-Paribas Foundation grant and the IPSL Climate Graduate School EUR. The CMIP6 project at IPSL used the HPC resources of TGCC under the allocations 2016-A0030107732, 2017-R0040110492 and 2018-R0040110492 (project gencmip6) provided by GENCI (Grand Equipement National de Calcul Intensif). This study benefited from the ESPRI (Ensemble de Services Pour la Recherche l’IPSL) computing and data centre (https://mesocentre.ipsl.fr) which is supported by CNRS, Sorbonne Universite, Ecole Polytechnique and CNES and through national and international grants. Special thanks to Juan Rivera for providing us with observational precipitation data from rain gauges and his helpful comments on the model validation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Villamayor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villamayor, J., Khodri, M., Villalba, R. et al. Causes of the long-term variability of southwestern South America precipitation in the IPSL-CM6A-LR model. Clim Dyn 57, 2391–2414 (2021). https://doi.org/10.1007/s00382-021-05811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05811-y

Keywords

Navigation