Skip to main content

Advertisement

Log in

On the decreases in North Atlantic significant wave heights from climate projections

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Consistent projected decreases in significant wave heights (\({\mathrm{H}}_{\mathrm{S}}\)) over the North Atlantic sub-basin under climate change scenarios have been endorsed by recent scientific literature. Here, the underlying causes of these projected decreases are investigated, by statistically characterizing the relationship between atmospheric circulation patterns, and wind generated waves. We apply a non-hierarchical partitioning method to the historical reference ERA5 mean sea level pressure (\(\mathrm{MSLP}\)) over the North Atlantic, defining Weather Types (WTs) at annual and seasonal scales. The \({\mathrm{H}}_{\mathrm{S}}\) fields related to those WTs are then characterized. Projected changes in the WTs frequencies of occurrence and related \({\mathrm{H}}_{\mathrm{S}}\), towards the end of twenty-first century, are analyzed for the RCP4.5 and RCP8.5 scenarios using a 10-member multi-model ensemble. Results show projected increases in the occurrence of WTs dominated by high-latitude storm tracks (above 50° N) and atmospheric blocking patterns, and projected decreases in the occurrence of WTs dominated by lower-latitude storm tracks and NAO− patterns, over the North Atlantic, consistent with generalized projected decreases in \({\mathrm{H}}_{\mathrm{S}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The codes generated for the current study are available from the corresponding author on reasonable request.

References

  • Aarnes OJ, Reistad M, Breivik Ø, Bitner-Gregersen E, Magnusson AK, Natvig B, Vanem E (2017) Projected changes in significant wave height toward the end of the 21st century: Northeast Atlantic. J Geophys Res Oceans 122:3394–3403

    Google Scholar 

  • Allaby M (2008) A dictionary of earth sciences, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Alves JHGM (2006) Numerical modelling of ocean swell contributions to the global wind-wave climate. Ocean Modell 11:98–122

    Google Scholar 

  • Ardhuin F, Rogers E, Babanin AV, Filipot J-F, Magne R, Roland A, Van der Westhuysen A, Queffeulou P, Lefevre J-M, Aouf L, Collard F (2010) Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. J Phys Oceanogr 40:1917–1941. https://doi.org/10.1175/2010JPO4324.1

    Article  Google Scholar 

  • Barber NF, Ursell F (1948) The generation and propagation of ocean waves and swell. I. Wave periods and velocities. Philos Trans R Soc Lond 240A:527–560

    Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Google Scholar 

  • Bidlot J-R, Janssen P, Abdalla S (2005) A revised formulation for ocean wave dissipation in CY29R1. ECMWF Technical Memorandum, R60.9/JB/0(1), pp 1–35

  • Bitner-Gregersen EM, Eide LI, Hørte T, Vanem E (2015) Impact of climate change and extreme waves on tanker design. SNAME Transactions 2014, USA

  • Caires S, Swail VR, Wang XL (2006) Projection and analysis of extreme wave climate. J Clim 19:5581–5605

    Google Scholar 

  • Camus P, Mendez FJ, Medina R (2011a) A hybrid efficient method to downscale wave climate to coastal areas. Coastal Eng 58:851–862

    Google Scholar 

  • Camus P, Mendez FJ, Cofiño AS (2011b) Analysis of clustering and selection algorithms for the study of multivariate wave climate. Coastal Eng 58:453–462

    Google Scholar 

  • Camus P, Menéndez M, Méndez F, Izaguirre C, Espejo A, Cánovas V, Pérez J, Rueda A, Losada I, Medina R (2014) A weather-type statistical downscaling framework for ocean wave climate. J Geophys Res Oceans 119:7389–7405. https://doi.org/10.1002/2014JC010141

    Article  Google Scholar 

  • Camus P, Losada IJ, Izaguirre C, Espejo A, Menéndez M, Pérez J (2017) Statistical wave climate projections for coastal impact assessments. Earth’s Future 5:918–933. https://doi.org/10.1002/2017EF000609

    Article  Google Scholar 

  • Casas-Prat M, Wang XL, Sierra JP (2014) A physical-based statistical method for modelling ocean wave heights. Ocean Modell 73:59–75

    Google Scholar 

  • Casas-Prat M, Wang XL, Swart N (2018) CMIP5-based global wave climate projections including the entire Arctic Ocean. Ocean Model 123:66–85

    Google Scholar 

  • Cassou C, Terray L, Hurrel JW, Deser C (2004) North Atlantic winter climate regimes: spatial asymmetry, stationarity with time, and oceanic forcing. J Clim 17:1055–1068

    Google Scholar 

  • Cavaleri L, Fox-Kemper B, Hemer MA (2012) Wind waves in the coupled climate system. Bull Am Meteorol Soc 93:1651–1661

    Google Scholar 

  • Cavazos T (2000) Using self-organizing maps to investigate extreme climate events: an application to wintertime precipitation in the Balkans. J Clim 13:1718–1732

    Google Scholar 

  • Chen G, Chapron B, Exraty R, Vandemark D (2002) A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer. J Atmos Ocean Technol 19:1849–1859

    Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:1830–1841

    Google Scholar 

  • Dobrynin M, Murawski J, Baehr J, Ilyina T (2015) Detection and attribution of climate change signal in ocean wind waves. J Clim 28(4):1578–1591

    Google Scholar 

  • Dodet G, Bertin X, Taborda R (2010) Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Model 31(3–4):120–131. https://doi.org/10.1016/j.ocemod.2009.10.010

    Article  Google Scholar 

  • Dodet G, Melet A, Ardhuin F, Bertin X, Idier D, Almar R (2019) The contribution of wind-generates waves to coastal sea-level changes. Surv Geophys 20:39

    Google Scholar 

  • Echevarria ER, Hemer M, Holbrook NJ (2019) Seasonal variability of the global spectral wind wave climate. J Geophys Res Oceans 124:2924–2939

    Google Scholar 

  • ECMWF (2016) IFS Documentation CY41R2. https://www.ecmwf.int/node/16651

  • Copernicus Climate Change Service (C3S) (2017) ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), https://cds.climate.copernicus.eu/cdsapp#!/home

  • Fan Y, Held IM, Lin S-J, Wang XL (2013) Ocean warming effect on surface gravity wave climate change for the end of the 21st century. J Clim 26:6046–6066

    Google Scholar 

  • Fan Y, Lin S-J, Griffies SM, Hemer MA (2014) Simulated global swell and wind-sea climate and their responses to anthropogenic climate change at the end of the twenty-first century. J Clim 27:3516–3536

    Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impact studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578

    Google Scholar 

  • Gallagher S, Gleeson E, Tiron R, McGrath R, Dias F (2016) Twenty-first century wave climate projections for Ireland and surface winds in the North Atlantic Ocean. Adv Sci Res 13:75–80

    Google Scholar 

  • Gutierrez JM, Cano R, Cofiño AS, Sordo C (2005) Analysis and downscaling multi-model seasonal forecast in Peru using self-organizing maps. Tellus 57A:435–447

    Google Scholar 

  • Hanley KE, Belcher SE (2008) Wave-driven wind jets in the marine atmospheric boundary layer. J Atmos Sci 65:2646–2660

    Google Scholar 

  • Hanley KE, Belcher SE, Sullivan PP (2010) A global climatology of wind-wave interaction. J Phys Oceanogr 40:1263–1282

    Google Scholar 

  • Harris DL (1966) The wave-driven wind. J Atmos Sci 23:688–693

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, New York

    Google Scholar 

  • Hemer MA, Trenham CE (2016) Evaluation of a CMIP5 derived dynamical global wind wave climate model ensemble. Ocean Model 103:2014. https://doi.org/10.1016/j.ocemod.2015.10.009

    Article  Google Scholar 

  • Hemer MA, Fan Y, Mori N, Semedo A, Wang X (2013a) Projected changes in wave climate from a multi-model ensemble. Nat Clim Change 3:471–476. https://doi.org/10.1038/NCLIMATE1791

    Article  Google Scholar 

  • Hemer MA, Katzfey J, Trenham CE (2013b) Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Model 70:221–245

    Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan R, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    Google Scholar 

  • Hurrel JW, Deser C (2009) North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar Syst 79:231–244

    Google Scholar 

  • IPCC-AR5 (2014) Climate change 2014: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Högström U, Smedman A, Sahleé E, Drennan WM, Kahma KK, Pettersson H, Zhang F (2009) The atmospheric boundary layer during swell: a field study and interpretation of the turbulent kinetic energy budget for high wave ages. J Atmos Sci 66:2764–2779

    Google Scholar 

  • Högström U, Smedman A, Semedo A, Rutgersson A (2011) Comments on “A Global Climatology of Wind-Wave Interaction”. J Phys Ocean 41(9):1811–1813

    Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679

    Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic oscillation: climatic significance and environmental impact. https://doi.org/10.1029/134GM01

  • Izaguirre C, Mendez FJ, Menendez M, Luceño A, Losada IJ (2010) Extreme wave climate variability in southern Europe using satellite data. J Geophys Res Oceans 115:C4

    Google Scholar 

  • Izaguirre C, Méndez FJ, Menendez M, Losada I (2011) Global extreme wave height variability based on satellite data. Geophys Res Lett 38:L10607

    Google Scholar 

  • Kinsman B (1965) Wind waves, their generation and propagation on the ocean surface. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Kushnir Y, Cardone VJ, Greenwood JG, Cane MA (1995) Link between North Atlantic climate variability of surface wave height and sea level pressure. In: 4th international workshop on wave hindcasting and forecasting, Banff, Alberta, October 16–20, 1995, pp 59–64

  • Kushnir Y, Cardone VJ, Greenwood JG, Cane MA (1997) The recent increase in North Atlantic wave heights. J Clim 10:2107–2113

    Google Scholar 

  • Łabuz TA (2015) Environmental impacts—coastal erosion and coastline changes. In: The BACC II Author Team (eds) Second assessment of climate change for the Baltic Sea Basin. Regional climate studies, Springer, Cham. https://doi.org/10.1007/978-3-319-16006-1_20

    Chapter  Google Scholar 

  • Lemos G, Semedo A, Dobrynin M, Behrens A, Staneva J, Bidlot J-R, Miranda P (2019) Mid-twenty-first century global wave climate projections: results from a dynamic CMIP5 based ensemble. Glob Planet Change 172:69–87

    Google Scholar 

  • Lemos G, Menendez M, Semedo A, Camus P, Hemer M, Dobrynin M, Miranda P (2020) On the need of bias correction methods for wave climate projections. Glob Planet Change 186:103109

    Google Scholar 

  • Lobeto H, Menendez M, Losada I (2020) The effect of climate change on wind-wave directional spectra. Geophys Res Lett (under review)

  • Michelangeli P, Vautard R, Legras B (1995) Weather regime recurrence and quasi stationarity. J Atmos Sci 52:1237–1256

    Google Scholar 

  • Morim J, Hemer MA, Cartwright N, Strauss D, Andutta F (2018) On the concordance of 21st century wind-wave climate projections. Glob Planet Change 167:160–171

    Google Scholar 

  • Morim J, Hemer MA, Wang X, Cartwright N, Trenham C, Semedo A, Young I, Bricheno L, Camus P, Casas-Prat M, Erikson L, Mentaschi L, Mori N, Shimura T, Timmermans B, Aarnes O, Breivik Ø, Behrens A, Dobrynin M, Menendez M, Staneva J, Wehner M, Wolf J, Kamranzad B, Webb A, Stopa J, Andutta F (2019) Robustness and uncertainties in global multivariate wind-wave climate projections. Nat Clim Change 20:20

    Google Scholar 

  • Munk WH (1951) Origin and generation of waves. In: Proceedings of the first conference on coastal engineering, Long Beach, California, pp 1–4

  • Munk WH, Miller GR, Snodgrass FE, Barber NF (1963) Directional recording of swell from distant storms. Philos Trans R Soc Lond 255:505–584

    Google Scholar 

  • National Geophysical Data Center (NGDC) (2006) 2-minute gridded global relief data (ETOPO2) v2. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5J1012Q

    Book  Google Scholar 

  • Pérez J, Mendez FJ, Menendez M, Losada IJ (2014) ESTELA: a method for evaluating the source and travel time of the wave energy reaching a local area. Ocean Dyn 64(8):1181–1191

    Google Scholar 

  • Pérez J, Menendez M, Camus P, Mendez F, Losada IJ (2015) Statistical multi-model climate projections of surface ocean waves in Europe. Ocean Modell 20:20

    Google Scholar 

  • Reguero BG, Losada IJ, Méndez FJ (2019) A recent increase in global wave power as a consequence of ocean warming. Nat Commun 10:205

    Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. https://doi.org/10.1007/s10584-011-0149-y

    Article  Google Scholar 

  • Semedo A (2010) Atmosphere–ocean interactions in swell dominated wave fields. Ph.D. thesis. Uppsala University, Sweden

  • Semedo A, Sušelj K, Rutgersson A (2008) Variability of wind sea and swell waves in the North Atlantic based on ERA-40 reanalysis. In: Proceedings of the 8th European wave and tidal energy conference, September 7–10, 2008, Uppsala, Sweden

  • Semedo A, Sætra Ø, Rutgersson A, Kahma KK, Pettersson H (2009) Wave induced wind in the marine boundary layer. J Atmos Sci 66:2256–2271

    Google Scholar 

  • Semedo A, Sušelj K, Rutgersson A, Sterl A (2011) A global view on the wind sea and swell climate and variability from ERA-40. J Clim 24(5):1461–1479

    Google Scholar 

  • Semedo A, Behrens R, Sterl A, Bengtsson L, Günther H (2013) Projection of global wave climate change toward the end of the twenty-first century. J Clim 26:8269–8288

    Google Scholar 

  • Semedo A, Vettor R, Breivik Ø, Sterl A, Reistad M, Soares CG, Lima D (2014) The wind sea and swell waves climate in the Nordic seas. Ocean Dyn 65:223–240

    Google Scholar 

  • Semedo A, Dobrynin M, Lemos G, Behrens A, Staneva J, de Vries H, Sterl A, Bidlot J, Döscher R, Murawski J, Miranda P (2018) CMIP5 derived single-forcing, single-model and single-scenario wind wave climate simulations: ensemble configuration and performance evaluation. J Mar Sci Eng 6(90):28

    Google Scholar 

  • Shimura T, Mori N, Yasuda T, Mase H (2014) Future projection of ocean wave climate change using multi-SST ensemble experiments. Coast Eng Proc. https://doi.org/10.9753/icce.v34.management.6

    Article  Google Scholar 

  • Snodgrass FE, Groves GW, Haselmann K, Miller GR, Munk WH, Powers WH (1966) Propagation of ocean swell across the Pacific. Philos Trans R Soc Lond A249:431–497

    Google Scholar 

  • Sullivan PP, Edson JB, Hristov T, McWilliams JC (2008) Large-eddy Simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J Atmos Sci 65:1225–1245

    Google Scholar 

  • Tolman H (2009) User manual and system documentation of WAVEWATCH III version 3.14. NOAA/NWS/NCEP/MMAB Technical Note, 276, 2009

  • Tolman H, the WAVEWATCH III® Development GroupUser. (2014). Manual and System Documentation of WAVEWATCH III® version 4.18. Technical Note 316, NOAA/NWS/NCEP/MMAB, p 282, +Appendices

  • Tuomi L, Kahma K, Pettersson H (2011) Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ Res 16:451–472

    Google Scholar 

  • Wallace JM, Gutzler D (1981) Teleconnections in the geopotential fields during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Google Scholar 

  • Wang XL, Feng Y, Swail VR (2012) North Atlantic wave height trends as reconstructed from the 20th century reanalysis. Geophys Res Lett 39:L18705

    Google Scholar 

  • Wang XL, Feng Y, Swail VR (2014) Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. Geophys Res Lett 41:1026–1034

    Google Scholar 

  • Webb A, Shimura T, Mori N (2018) A high-resolution future wave climate projection for the Coastal Northwestern Atlantic. The 65th coastal engineering lectures, 74(2)

  • Woolf DK, Challenor PG, Cotton PD (2002) Variability and predictability of the North Atlantic wave climate. J Geophys Res Oceans 107(C10):9–1

    Google Scholar 

  • Young IR (1999) Seasonal variability of the global ocean wind and wave climate. Int J Climatol 19:931–950

    Google Scholar 

Download references

Funding

This work has been done under the auspices of the JCOMM COWCLIP (Coordinated Ocean Wave Climate Project). Gil Lemos is supported by the EarthSystems Doctoral School, at University of Lisbon, supported by Portuguese Foundation for Science and Technology (FCT) project UIDB/50019/2020-Instituto Dom Luiz (IDL). Melisa Menendez acknowledges the financial support from the Ramon y Cajal Program (RYC-2014-6469) and project ECLISEA, part of ERA4CS/ERA-NET initiated by JPI Climate and cofounded by the European Union (Grant 690462).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Lemos.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2950 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos, G., Menendez, M., Semedo, A. et al. On the decreases in North Atlantic significant wave heights from climate projections. Clim Dyn 57, 2301–2324 (2021). https://doi.org/10.1007/s00382-021-05807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05807-8

Keywords

Navigation