Skip to main content

Advertisement

Log in

A perturbed parameter ensemble of HadGEM3-GC3.05 coupled model projections: part 2: global performance and future changes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper provides a quantitative assessment of large-scale features in a perturbed parameter ensemble (PPE) of Met Office Unified Model HadGEM-GC3.05 in coupled global historical and future simulations. The main motivation for the simulations is to provide a major component of the UK Climate Projections 2018 (UKCP18), but they will also be used to make worldwide projections and inform future model development. Initially, a 25-member PPE, with 25 different parameter combinations, was simulated. Five members were subsequently dropped because either their simulated climate was unrealistically cool by 1970 or they suffered from numerical instabilities. The remaining 20 members were evaluated after completing the historical phase (1900–2005) against 13 separately selected Climate Model Intercomparison Project Phase 5 (CMIP5) models, and five more members were dropped. The final product is a combined projection system of 15 PPE members and 13 CMIP5 models, which has a number of benefits. In particular, the range of outcomes available from the combined set of 28 is often larger than from either of the two constituent ensembles, thus providing users with a more complete picture of plausible impacts. Here we mainly describe the evaluation process of the 20 PPE members. We evaluate biases in a number of important properties of the global coupled system, including assessment of climatological averages, coupled modes of internal variability and historical and future changes. The parameter combinations yielded plausible yet diverse atmosphere and ocean model behaviours. The range of global temperature changes is narrow, largely driven by use of different CO2 pathways. The range of global warming is seemingly not linked to range of feedbacks estimated from atmosphere-only runs, though we caution that the range of the latter is narrow relative to CMIP5, and therefore this result is not unexpected. This is the second of two papers describing the generation of the PPE for UKCP18 projections. Part 1 (Sexton et al. 2021) describes the selection of 25 parameter combinations of 47 atmosphere and land surface parameters, using a set of cheap atmosphere-only runs at a coarser resolution from nearly 3000 samples of parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Adler RF, Sapiano MRP, Huffman GJ, Wang J-J, Gu G, Bolvin D, Chiu L, Schneider U, Becker A, Nelkin E, Xie P, Ferraro R, Shin D-B (2018) The Global Precipitation Climatology Project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation. Atmosphere 9:138. https://doi.org/10.3390/atmos9040138

    Article  Google Scholar 

  • Andrews T, Gregory JM, Paynter D, Silvers LG, Zhou C, Mauritsen T, Webb MJ, Armour KC, Forster PM, Titchner H (2018) Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophys Res Lett 45(16):8490–8499. https://doi.org/10.1029/2018GL078887

    Article  Google Scholar 

  • Andrews T, Andrews MB, Bodas-Salcedo A, Jones GS, Kulhbrodt T, Manners J, Menary MB, Ridley J, Ringer MA, Sellar AA, Senor CA, Tang Y (2019) Forcings, feedbacks and climate sensitivity in HadGEM3-GC3.1 and UKESM1. J Adv Model Earth Syst 11(12):4377–4394. https://doi.org/10.1029/2019MS001866

    Article  Google Scholar 

  • Balmaseda MA, Trenberth KE, Källén E (2013) Distinctive climate signals in reanalysis of global ocean heat content. Geophys Res Lett 40(9):1754–1759. https://doi.org/10.1002/grl.50382

    Article  Google Scholar 

  • Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 40(1):27–67. https://doi.org/10.1080/02786820500421521

    Article  Google Scholar 

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232. https://doi.org/10.1038/nature10946

    Article  Google Scholar 

  • Borlace S, Cai W, Santoso A (2013) Multidecadal ENSO amplitude variability in a 1000-yr simulation of a coupled global climate model: implications for observed ENSO variability. J Climate 26(23):9399–9407. https://doi.org/10.1175/JCLI-D-13-00281.1

    Article  Google Scholar 

  • Brierley CM, Collins M, Thorpe AJ (2010) The impact of perturbations to ocean-model parameters on climate and climate change in a coupled model. Climate Dyn 34:325–343. https://doi.org/10.1007/s00382-008-0486-3

    Article  Google Scholar 

  • Cai W, Santoso A, Wang G, Yeh S-W, An S-I, Cobb KM, Collins M, Guilyardi E, Jin F-F, Kug J-S, Lengaigne M, McPhaden MJ, Takahashi K, Timmermann A, Vecchi G, Watanabe M, Wu L (2015) ENSO and greenhouse warming. Nat Climate Change 5:849–859. https://doi.org/10.1038/nclimate2743

    Article  Google Scholar 

  • Chadwick R, Good P, Andrews T, Martin G (2014) Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys Res Lett 41:610–615. https://doi.org/10.1002/2013gl058504

    Article  Google Scholar 

  • Cheng W, Chiang JCH, Zhang D (2013) Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J Climate 26(18):7187–7197. https://doi.org/10.1175/JCLI-D-12-00496.1

    Article  Google Scholar 

  • Cheng L, Trenberth KE, Palmer MD, Zhu J, Abraham JP (2016) Observed and simulated full-depth ocean heat-content changes for 19702005. Ocean Sci 12:925–935. https://doi.org/10.5194/os-12-925-2016

    Article  Google Scholar 

  • Cheng L, Trenberth K, Fasullo J, Boyer T, Abraham J, Zhu J (2017) Improved estimates of ocean heat content from 1960 to 2015. Sci Adv 3(3):e1601545. https://doi.org/10.1126/sciadv.1601545

    Article  Google Scholar 

  • Cheng L, Abraham J, Hausfather Z, Trenberth KE (2019) How fast are the oceans warming? Science 363(6423):128–129. https://doi.org/10.1126/science.aav7619

    Article  Google Scholar 

  • Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2006) Towards quantifying uncertainty in transient climate change. Climate Dyn 27:127–147. https://doi.org/10.1007/s00382-006-0121-0

    Article  Google Scholar 

  • Collins M, Brierley CM, MacVean M, Booth BBB, Harris GR (2007) The sensitivity of the rate of transient climate change to ocean physics perturbations. J Climate 20(10):2315–2320. https://doi.org/10.1175/JCLI4116.1

    Article  Google Scholar 

  • Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2011) Climate model errors, feedbacks and forcings. A comparison of perturbed physics and multi-model ensembles. Climate Dyn 36:1737–1766. https://doi.org/10.1007/s00382-010-0808-0

    Article  Google Scholar 

  • Davey MK, Brookshaw A, Ineson S (2013) The probability of the impact of ENSO on precipitation and near-surface temperature. Climate Risk Manag 1:5–24. https://doi.org/10.1016/j.crm.2013.12.002

    Article  Google Scholar 

  • Davy R, Chen L, Hanna E (2018) Arctic amplification metrics. Int J Climatol 38(12):4384–4394. https://doi.org/10.1002/joc.5675

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Ahdrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):533–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Deser C, Alexander MA, Xie S-P, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci 2:115–143. https://doi.org/10.1146/annurev-marine-120408-151453

    Article  Google Scholar 

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou S, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp 741–866

  • Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108(D3):4124

    Google Scholar 

  • Giorgi F, Francisco R (2000) Evaluating uncertainties in the prediction of regional climate change. Geophys Res Lett 27(9):1295–1298. https://doi.org/10.1029/1999GL011016

    Article  Google Scholar 

  • Gnanadesikan A, Griffies SM, Samuels BL (2007) Effects in a climate model of slope tapering in neutral physics schemes. Ocean Model 16(1–2):1–16. https://doi.org/10.1016/j.ocemod.2006.06.004

    Article  Google Scholar 

  • Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Oceans 118(12):6704–6716. https://doi.org/10.1002/2013JC009067

    Article  Google Scholar 

  • Good P, Chadwick R, Holloway CE, Kennedy J, Lowe JA, Roehrig R, Rushley SS (2020) High sensitivity of tropical precipitation to local sea-surface temperature. Nature. https://doi.org/10.1038/s41586-020-2887-3

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn 16:147–168. https://doi.org/10.1007/s003820050010

    Article  Google Scholar 

  • Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Oka SNA, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32(12):L12703. https://doi.org/10.1029/2005GL023209

    Article  Google Scholar 

  • Gregory J, Bi D, Collier MA, Dix MR, Hirst AC, Hu A, Huber M, Knutti R, Marsland SJ, Meinshausen M, Rashid HA, Rotstayn LD, Schurer A, Church JA (2013) Climate models without preindustrial volcanic forcing underestimate historical ocean thermal expansion. Geophys Res Lett 40(8):1600–1604. https://doi.org/10.1002/grl.50339

    Article  Google Scholar 

  • Haney RL (1971) Surface thermal boundary condition for ocean circulation models. J Phys Oceanogr 1(4):145–167. https://doi.org/10.1175/1520-0485(1971)001%3c0241:STBCFO%3e2.0.CO;2

    Article  Google Scholar 

  • Harris GR, Sexton DMH, Booth BBB, Collins M, Murphy JM (2013) Probabilistic projections of transient climate change. Climate Dyn 40:2937–2972. https://doi.org/10.1007/s00382-012-1647-y

    Article  Google Scholar 

  • He J, Soden BJ (2016) Does the lack of coupling in SST-forced atmosphere-only models limit their usefulness for climate change studies? J Climate 29(12):4317–4325. https://doi.org/10.1175/JCLI-D-14-00597.1

    Article  Google Scholar 

  • Heuzé C (2017) North Atlantic deep water formation and AMOC in CMIP5 models. Ocean Sci 13:609–622. https://doi.org/10.5194/os-13-609-2017

    Article  Google Scholar 

  • Hewitt HT, Copsey D, Culverwell ID, Harris CM, Hill RSR, Keen AB, McLaren AJ, Hunke EC (2011) Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci Model Dev 4:223–253. https://doi.org/10.5194/gmd-4-223-2011

    Article  Google Scholar 

  • Hunke EC, Lipscomb WH (2008) CICE: the Los Alamos sea ice model documentation and software users manual, Version 4.0

  • Hwang Y-T, Frierson DMW (2013) Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc Natl Acad Sci 110(13):4935–4940. https://doi.org/10.1073/pnas.1213302110

    Article  Google Scholar 

  • Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65(1–4):158–175. https://doi.org/10.1016/j.jmarsys.2005.11.019

    Article  Google Scholar 

  • Irvine PJ, Gregoire LJ, Lunt DJ, Valdes PJ (2013) An efficient method to generate a perturbed parameter ensemble of a fully coupled AOGCM without flux-adjustment. Geosci Model Dev 6(5):1447–1462. https://doi.org/10.5194/gmd-6-1447-2013

    Article  Google Scholar 

  • Jackson LC (2013) Shutdown and recovery of the AMOC in a coupled global climate model: The role of the advective feedback. Geophys Res Lett 40(6):1182–1188. https://doi.org/10.1002/grl.50289

    Article  Google Scholar 

  • Jackson CS, Sen MK, Huerta G, Deng Y, Bowman KP (2008) Error reduction and convergence in climate prediction. J Climate 21:6698–6709

    Article  Google Scholar 

  • Jenkins G, Perry M, Prior J (2009). UKCP08: the climate of the United Kingdom and recent trends

  • Jnglin Wills RC, Armour KC, Battisti DS, Hartmann DL (2018) Ocean-atmosphere dynamical coupling fundamental to the Atlantic Multidecadal Oscillation. J Climate 32(1):251–272. https://doi.org/10.1175/JCLI-D-18-0269.1

    Article  Google Scholar 

  • Karmalkar AV, Sexton DMH, Murphy JM, Booth BBB, Rostron JW, McNeall DJ (2019) Finding plausible and diverse variants of a climate model. Part II: development and validation of methodology. Climate Dyn 53:1–31. https://doi.org/10.1007/s00382-019-04617-3

    Article  Google Scholar 

  • Khodri M, Izumo T, Vialard J, Janicot S, Cassou C, Lengaigne M, Mignot J, Gastineau G, Guilyardi E, Lebas N, Robock A, McPhaden MJ (2017) Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat Commun 8:778. https://doi.org/10.1038/s41467-017-00755-6

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33(17):L17706. https://doi.org/10.1029/2006GL026242

    Article  Google Scholar 

  • Latif MK, Sperber J, Arblaster P, Braconnot D, Chen A, Colman U, Cubasch C, Cooper P, Delecluse D, Dewitt L, Fairhead G, Flato T, Hogan M, Ji M, Kimoto A, Kitoh T, Knutson HL, Treut T, Li S, Manabe O, Marti C, Mechoso G, Meehl S, Power E, Roeckner J, Sirven L, Terray A, Vintzileos R, Voß B, Wang W, Washington I, Yoshikawa JYu, Zebiak S (2001) ENSIP: the El Niño simulation intercomparison project. Climate Dyn 18:255–276. https://doi.org/10.1007/s003820100174

    Article  Google Scholar 

  • Li R, Fu Y (2005) Tropical precipitation estimated by GPCP and TRMM PR observations. Adv Atmos Sci 22:852–864

    Article  Google Scholar 

  • Li G, Xie S-P (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J Climate 27(4):1765–1780. https://doi.org/10.1175/JCLI-D-13-00337.1

    Article  Google Scholar 

  • Li G, Du Y, Xu H, Ren B (2015) An intermodel approach to identify the source of excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational datasets. J Climate 28:7630–7640. https://doi.org/10.1175/JCLI-D-15-0168.1

    Article  Google Scholar 

  • Li G, Jian Y, Yang S, Du Y, Wang Z, Li Z, Zhuang W, Jiang W, Huang G (2019) Effect of excessive equatorial Pacific cold tongue bias on the El Niño-Northwest Pacific summer monsoon relationship in CMIP5 multi-model ensemble. Climate Dyn 52:6195–6212. https://doi.org/10.1007/s00382-018-4504-9

    Article  Google Scholar 

  • Li M, Wu P, Sexton DMH, Ma Z (2020) Potential shifts in climate zones under a future global warming scenario using soil moisture classification. Climate Dyn (accepted)

  • Lin J-L (2007) The double-ITCZ problem in IPCC AR4 Coupled GCMs: ocean-atmosphere feedback analysis. J Climate 20(18):4497–4525. https://doi.org/10.1175/JCLI4272.1

    Article  Google Scholar 

  • Liu Y, Daum PH, Guo H, Peng Y (2008) Dispersion bias, dispersion effect, and the aerosol-cloud conundrum. Environ Res Lett 3(4):045021. https://doi.org/10.1088/1748-9326/3/4/045021

    Article  Google Scholar 

  • Lowe JA, Murphy JM, Palmer MD, Fung F (2018) UKCP18 Science overview report

  • Mann GW, Carslaw KS, Spracklen DV, Ridley DA, Manktelow PT, Chipperfield MP, Pickering SJ, Johnson CE (2010) Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model. Geosci Model Dev 3(2):519–551. https://doi.org/10.5194/gmd-3-519-2010

    Article  Google Scholar 

  • Mauritzen C, Zivkovic T, Veldore V (2017) On the relationship between climate sensitivity and modelling uncertainty. Tellus A 69:1327765. https://doi.org/10.1080/16000870.2017.132776

    Article  Google Scholar 

  • McSweeney CF, Murphy J, Sexton DMH, Rostron JW, Yamazaki K, Harris GR (2018) Selection of CMIP5 members to augment a perturbed-parameter ensemble of global realisations of future climate for the UKCP18 scenarios. Hadley Centre Technical Note 102

  • Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, chapter 10. Cambridge University Press, Cambridge

  • Menary MB, Roberts CD, Palmer MD, Halloran PR, Jackson L, Wood RA, Müller WA, Matei D, Lee S (2013) Mechanisms of aerosol-forced AMOC variability in a state of the art climate model. J Geophys Res Ocean 118(4):2087–2096. https://doi.org/10.1002/jgrc.20178

    Article  Google Scholar 

  • Meraner K, Mauritsen T, Voigt A (2013) Robust increase in equilibrium climate sensitivity under global warming. Geophys Res Lett 40(22):5944–5948. https://doi.org/10.1002/2013GL058118

    Article  Google Scholar 

  • Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J Geophys Res 117:D08101. https://doi.org/10.1029/2011JD017187

    Article  Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones G, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772. https://doi.org/10.1038/nature02771

    Article  Google Scholar 

  • Murphy JM, Harris GR, Sexton DMH, Kendon EJ, Bett PE, Clark RT, Eagle KE, Fosser G, Fung F, Lowe JA, McDonald RE, McInnes RN, McSweeney CF, Mitchell JFB, Rostron JW, Thornton HE, Tucker S, Yamazaki K (2018) UKCP18 land projections: science report

  • Myhre G, Shindell D, Bron F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp 659–740

  • NEMO System Team (2020) NEMO ocean engine

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108(D14):4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Ringer MA, Andrews T, Webb MJ (2014) Global-mean radiative feedbacks and forcing in atmosphere-only and coupled atmosphere-ocean climate change experiments. Geophys Res Lett 41(11):4035–4042. https://doi.org/10.1002/2014GL060347

    Article  Google Scholar 

  • Ropelewski C, Halpert MS (1987) Global and regional scale precipitation associated with El Niño/Southern Oscillation. Mon Weather Rev 115(8):1606–1626. https://doi.org/10.1175/1520-0493(1987)115%3c1606:GARSPP%3e2.0.CO;2

    Article  Google Scholar 

  • Rostron JW, Sexton DMH, McSweeney CF, Yamazaki K, Andrews T, Furtado K, Ringer MA, Tsushima Y (2020) The impact of performance filtering on climate feedbacks in a perturbed parameter ensemble. Climate Dyn. https://doi.org/10.1007/s00382-020-05281-8

    Article  Google Scholar 

  • Rowlands DJ, Frame DJ, Ackerley D, Aina T, Booth BBB, Christensen C, Collins M, Faull N, Forest CE, Grandey BS, Gryspeerdt E, Highwood EJ, Ingram WJ, Knight S, Lopez A, Massey N, McNamara F, Meinshausen N, Piani C, Rosier SM, Sanderson BM, Smith LA, Stone DA, Thurston M, Yamazaki K, Yamazaki YH, Allen MR (2012) Broad range of 2050 warming from an observationally constrained large climate model ensemble. Nat Geosci 5:256–260. https://doi.org/10.1038/ngeo1430

    Article  Google Scholar 

  • Sanderson BM (2011) A multimodel study of parametric uncertainty in predictions of climate response to rising greenhouse gas concentrations. J Climate 24(5):1362–1377. https://doi.org/10.1175/2010JCLI3498.1

    Article  Google Scholar 

  • Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depths, 1850–1990. J Geophys Res Atmos 98(D12):22987–22994. https://doi.org/10.1029/93JD02553

    Article  Google Scholar 

  • Scaife AA, Copsey D, Gordon C, Harris C, Hinton T, Keeley S, O’Neill A, Roberts M, Williams K (2011) Improved Atlantic winter blocking in a climate model. Geophys Res Lett 38(23):L23703. https://doi.org/10.1029/2011GL049573

    Article  Google Scholar 

  • Sen Gupta A, Jordain NC, Brown JN, Monselesan D (2013) Climate drift in the CMIP5 models. J Climate 26(21):8597–8615. https://doi.org/10.1175/JCLI-D-12-00521.1

    Article  Google Scholar 

  • Sexton DMH, Murphy JM (2012) Multivariate probabilistic projections using imperfect climate models. Part II: robustness of methodological choices and consequences for climate sensitivity. Climate Dyn 38:2543–2558. https://doi.org/10.1007/s00382-011-1209-8a

    Article  Google Scholar 

  • Sexton DMH, Karmalkar AV, Murphy JM, Williams KD, Boutle IA, Morcrette CJ, Stirling AJ, Vosper SB (2019) Finding plausible and diverse variants of a climate model. Part 1: establishing the relationship between errors at weather and climate time scales. Climate Dyn 53:989–1022. https://doi.org/10.1007/s00382-019-04625-3

    Article  Google Scholar 

  • Sexton DMH, McSweeney CF, Rostron JW, Yamazaki K, Booth BBB, Murphy JM, Regayre L, Johnson J, Karmalkar A (2021) A perturbed parameter ensemble of HadGEM3-GC3.05 coupled model projections: part 1: selecting the parameter combinations. Climate Dyn. https://doi.org/10.1007/s00382-021-05709-9

    Article  Google Scholar 

  • Shiogama H, Watanabe M, Yoshimori M, Yokohata T, Ogura T, Annan JD, Hargreaves JC, Abe M, Kamae Y, Oishi R, Nobui R, Emori S, Nozawa T, Abe-Ouchi A, Kimoto M (2012) Perturbed physics ensemble using the MIROC5 coupled atmosphere-ocean GCM without flux corrections: experimental design and results. Climate Dyn 39:3041–3056. https://doi.org/10.1007/s00382-012-1441-x

    Article  Google Scholar 

  • Shiogama H, Watanabe M, Ogura T, Yokohata T, Kimoto M (2013) Multi-parameter multi-physics ensemble (MPMPE): a new approach exploring the uncertainties of climate sensitivity. Atmos Sci Lett 15(2):97–102. https://doi.org/10.1002/asl2.472

    Article  Google Scholar 

  • Smeed DA, Josey SA, Beaulieu C, Johns WE, Moat BI, Frajka-Williams E, Rayner D, Meinen CS, Baringer MO, Bryden HL, McCarthy GD (2018) The North Atlantic Ocean is in a state of reduced overturning. Geophys Res Lett 45(3):1527–1533. https://doi.org/10.1002/2017GL076350

    Article  Google Scholar 

  • Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S, Martin A, Murphy JM, Piani C, Sexton D, Smith LA, Spicer RA, Thorpe AJ, Allen MR (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433(7024):403–406. https://doi.org/10.1038/nature03301

    Article  Google Scholar 

  • Sutton RT, Dong B (2012) Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci 5:788–792. https://doi.org/10.1038/ngeo1595

    Article  Google Scholar 

  • Talandier C, Deshayes J, Treguire A-M, Capet X, Benshila R, Debreu L, Dussin R, Molines J-M, Madec G (2014) Improvements of simulated Western North Atlantic current system and impacts on the AMOC. Ocean Model 76:1–19. https://doi.org/10.1016/j.ocemod.2013.12.007

    Article  Google Scholar 

  • Taylor KE, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Timmermann A, An S-I, Kug J-S, Jin F-F, Cai W, Capotondi A, Cobb K, Lengaigne M, McPhaden MJ, Stuecker MF, Stein K, Wittenberg AT, Yun K-S, Bayr T, Chen H-C, Chikamoto Y, Dewitte B, Dommenget D, Grothe P, Guilyardi E, Ham Y-G, Hayashi M, Ineson S, Kang D, Kim S, Kim W, Lee J-Y, Li T, Luo J-J, McGregor S, Planton Y, Power S, Rashid H, Ren H-L, Santoso A, Takahashi K, Todd A, Wang G, Wang G, Xie R, Yang W-H, Yeh S-W, Yoon J, Zeller E, Zhang X (2018) El Niño-Southern Oscillation complexity. Nature 559:535–545. https://doi.org/10.1038/s41586-018-0252-6

    Article  Google Scholar 

  • Toniazzo T, Scafe AA (2006) The influence of ENSO on winter North Atlantic climate. Geophys Res Lett 33(24):L24704. https://doi.org/10.1029/2006GL027881

    Article  Google Scholar 

  • Walters D, Boutle I, Brooks M, Melvin T, Stratton R, Vosper S, Xavier P (2017b) The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci Model Dev 10(4):1487–1520. https://doi.org/10.5194/gmd-10-1487-2017

    Article  Google Scholar 

  • Walters D, Baran A, Boutle I, Brooks M, Earnshaw P, Edwards J, Furtado K, Hill P, Lock A, Manners J, Morcrette C, Mulcahy J, Sanchez C, Smith C, Stratton R, Tennant W, Tomassini L, Van Weverberg K, Vosper S, Willett M, Browse J, Bushell A, Dalvi M, Essery R, Gedney N, Hardiman S, Johnson B, Johnson C, Jones A, Mann G, Milton S, Rumbold H, Sellar A, Ujiie M, Whitall M, Williams K, Zerroukat M (2017a) The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci Model Dev Discuss. https://doi.org/10.5194/gmd-2017-291.heat

    Article  Google Scholar 

  • Watanabe M, Wittenberg AT (2012) A method for disentangling El Niño-mean state interaction. Geophys Res Lett 39(14):L14702. https://doi.org/10.1029/2012GL052013

    Article  Google Scholar 

  • Williams KD, Harris CM, Bodas-Salcedo A, Camp J, Comer RE, Copsey D, Fereday D, Graham T, Hill R, Hinton T, Hyder P, Ineson S, Masato SFMG, Roberts MJ, Rowell DP, Sanchez C, Shelly A, Sinha B, Walters DN, West A, Woollings T, Xavier PK (2015) The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci Model Dev 88:1509–1524. https://doi.org/10.5194/gmd-88-1509-2015

    Article  Google Scholar 

  • Williams KD, Copsey D, Blockley EW, Bodas-Salcedo A, Calvert D, Comer R, Davis P, Graham T, Hewitt HT, Hill R, Hyder P, Ineson S, Johns TC, Keen AB, Lee RW, Megann A, Milton SF, Rae JGL, Roberts MJ, Scaife AA, Schiemann R, Storkey D, Thorpe L, Watterson IG, Walters DN, West A, Wood RA, Woollings T, Xavier PK (2017) The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. J Adv Model Earth Syst 10(2):357–380. https://doi.org/10.1002/2017MS001115

    Article  Google Scholar 

  • Wilson DR, Bushell AC, Kerr-Munslow AM, Price JD, Morcrette CJ (2008) PC2: a prognostic cloud fraction and condensation scheme. I: scheme description. Q J R Meteorol Soc 134(637):2093–2107. https://doi.org/10.1002/qj.333

    Article  Google Scholar 

  • Wood N, Staniforth A, White A, Allen T, Diamantakis M, Gross M, Melvin T, Smith C, Vosper S, Zerroukat M, Thuburn J (2013) An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Q J R Meteorol Soc 140(682):1505–1520. https://doi.org/10.1002/qj.2235

    Article  Google Scholar 

  • Wu P, Christidis N, Stott P (2013) Anthropogenic impact on Earths hydrological cycle. Nat Climate Change 3:807–810. https://doi.org/10.1038/NCLIMATE1932

    Article  Google Scholar 

  • Yamazaki K, Rowlands DJ, Aina T, Blaker AT, Bowery A, Massey N, Miller J, Rye C, Tett SFB, Williamson D, Yamazaki YH, Allen MR (2013) Obtaining diverse behaviors in a climate model without the use of flux adjustments. J Geophys Res Atmos 118(7):2781–2793. https://doi.org/10.1002/jgrd.50304

    Article  Google Scholar 

  • Zappa G, Shepherd TG (2017) Storylines of atmospheric circulation change for European Regional Climate Impact Assessment. J Clim 30(16):6561–6577. https://doi.org/10.1175/JCLI-D-16-0807.1

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33(17):L17712. https://doi.org/10.1029/2006GL026267

    Article  Google Scholar 

  • Zheng Y, Lin J-L, Shinoda T (2012) The equatorial Pacifc cold tongue simulated by IPCC AR4 coupled GCMs: upper ocean heat budget and feedback analysis. J Geophys Res 117:C05024. https://doi.org/10.1029/2011JC00774industri6

    Article  Google Scholar 

Download references

Acknowledgements

We thank three anonymous reviewers for their constructive comments. We are grateful to Dan Copsey, Tim Graham and Dave Storkey for their generous help with the technical issues. We also thank Tim Andrews, Yoko Tsushima and Mark Ringer for valuable discussions.

Funding

This study was funded by Department for Business, Energy and Industrial Strategy and Newton Fund (414000024199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniko Yamazaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5793 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, K., Sexton, D.M.H., Rostron, J.W. et al. A perturbed parameter ensemble of HadGEM3-GC3.05 coupled model projections: part 2: global performance and future changes. Clim Dyn 56, 3437–3471 (2021). https://doi.org/10.1007/s00382-020-05608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05608-5

Keywords

Navigation