Skip to main content

Advertisement

Log in

Multi-annual response of a Pampean shallow lake from central Argentina to regional and large-scale climate forcings

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Pampean Plains comprise a flat area of southeastern South America (SESA), encompassing the most populated and productive area of Argentina. Several floods and droughts have been reported in the region during the last 50 years affecting lakeshore villages. In spite of the well-known importance of monitoring hydrological systems in flood-risk areas, long series of instrumental limnimetric data are sparse in the Pampean Plains. Lake Melincué (33°43′S/61°28′W), located in the center of this region, provides a valuable record of the annual lake-area oscillations from 1965 to 2015. In this study we analyze the lake area variability at different time-scales, from intra-annual to multi-annual, investigating the persistence and the frequencies of the series. Our results show that the lake area oscillates following a significant quasi-bidecadal periodicity. A secondary 13 years-frequency signal was detected since the 1970s, when a dramatic increase in Lake Melincué area occurred, associated with a shift to humid conditions in SESA. The analysis of meteorological series suggests that lake area variations are controlled by precipitation and evaporation with different time-lags. Further comparisons of the lake area fluctuations with climate indices from the Pacific and Atlantic oceans provide evidence of the link between the dynamic of lakes in the Pampean Plains and both large-scale climate circulation and low-frequency phenomena. These results confirm that a regular monitoring of these shallow lake systems and the analysis of high-resolution reliable data on inland water environments of the Pampean Plains is fundamental for anticipating their hydrological responses to forecasted climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Guerra et al. 2015)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achaga RV, Irurzun MA, Gogorza CSG et al (2017) Paleomagnetic and paleoclimatic investigation at Laguna Melincue (Pampean Plains, Argentina): preliminary results. Stud Geophys Geod 61:318–335. https://doi.org/10.1007/s11200-016-1247-0

    Article  Google Scholar 

  • Agosta EA, Compagnucci RH (2008) The 1976/77 austral summer climate transition effects on the atmospheric circulation and climate in Southern South America. J Clim 21:4365–4383. https://doi.org/10.1175/2008JCLI2137.1

    Article  Google Scholar 

  • Andreoli RV, Kayano MT (2005) ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes. Int J Climatol 25(15):2017–2030

    Article  Google Scholar 

  • Barreiro M (2010) Influence of ENSO and the South Atlantic Ocean on climate predictability over Southeastern South America. Clim Dyn 35:1493–1508. https://doi.org/10.1007/s00382-009-0666-9

    Article  Google Scholar 

  • Barros V, González M, Liebmann B, Camilloni I (2000) Influence of the South Atlantic convergence zone and South Atlantic sea surface temperatura on interanual summer rainfall variability in Southeastern South America. Theor Appl Climatol 67:123–133

    Article  Google Scholar 

  • Barros V, Doyle M, González M, Camilloni I, Bejarán R, Caffera RM (2002) Climate variability over subtropical South America and the South American monsoon: a review. Meteorologica 27(1–2):33–57

    Google Scholar 

  • Barros VR, Doyle ME, Camilloni IA (2008) Precipitation trends in southeastern South America: relationship with ENSO phases and with low-level circulation. Theor Appl Climatol 93(1–2):19–33

    Article  Google Scholar 

  • Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34(10):3001–3023

    Article  Google Scholar 

  • Berbery EH, Barros VR (2002) The hydrologic cycle of the la Plata basin in South America. J Hydrometeorol 3:630–645. https://doi.org/10.1175/1525-7541(2002)003%3C0630:THCOTL%3E2.0.CO;2

    Article  Google Scholar 

  • Bianchi LO, Rivera JA, Rojas F et al (2017) A regional water balance indicator inferred from satellite images of an Andean endorheic basin in central-western Argentina. Hydrol Sci J 62:533–545. https://doi.org/10.1080/02626667.2016.1247210

    Article  Google Scholar 

  • Biasatti N, Delannoy L, Peralta E, Pire E, Romano M, Torres G (1999) Cuenca Hidrográfica del Humedal de la Laguna Melincué, Provincia de Santa Fe. ProDIA, SRNyDS, Buenos Aires

  • Bohn VY, Delgado AL, Piccolo MC, Perillo GME (2016) Assessment of climate variability and land use effect on shallow lakes in temperate plains of Argentina. Environ Earth Sci 75:1–15. https://doi.org/10.1007/s12665-016-5569-6

    Article  Google Scholar 

  • Camilloni IA, Barros VR (2003) Extreme discharge events in the Paraná River and their climate forcing. J Hydrol 278(1):94–106

    Article  Google Scholar 

  • Castellanos A (1924) Contribución al Estudio de la Paleoantropología Argentina. Restos Descubiertos en el Arroyo Cululú (Pcia. de Santa Fe). Revista de la Universidad Nacional de Córdoba 11:7–9

    Google Scholar 

  • Chiessi CM, Mulitza S, Pätzold J et al (2009) Possible impact of the Atlantic multidecadal oscillation on the South American summer monsoon. Geophys Res Lett 36:1–5. https://doi.org/10.1029/2009GL039914

    Article  Google Scholar 

  • Chou C, Chiang JCH, Lan CW et al (2013) Increase in the range between wet and dry season precipitation. Nat Geosci 6:263–267. https://doi.org/10.1038/ngeo1744

    Article  Google Scholar 

  • Compagnucci R, Agosta E (2008) La precipitacion de verano en el centro-oeste de argentina y los fenomenos interanual el niño/oscilacion sur (enos) e interdecadico “tipo” enos. Geoacta 33:107–114

    Google Scholar 

  • Compagnucci RH, Agosta EA, Vargas MW (2002) Climatic change and quasi-oscillations in central-west Argetnina summer precipitation: main features and coherent behaviour with southern African region. Clim Dyn 18:421–435

    Article  Google Scholar 

  • Córdoba FE, Guerra L, Rodríguez CC et al (2014) Una visión paleolimnológica de la variabilidad hidroclimática reciente en el centro de Argentina: desde la Pequeña Edad de Hielo al siglo XXI. Latin Am J Sedimentol Basin Anal 21(2):139–163

    Google Scholar 

  • Córdoba FE, Piovano EL, Guerra L et al (2017) Independent time markers validate 210Pb chronologies for two shallow Argentine lakes in Southern Pampas. Quat Int. https://doi.org/10.1016/j.quaint.2016.07.003

    Google Scholar 

  • d’Orgeville M, Peltier WR (2007) On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: might they be related? Geophys Res Lett 34:3–7. https://doi.org/10.1029/2007GL031584

    Google Scholar 

  • De Almeida RAF, Nobre P, Haarsma RJ, Campos EJD (2007) Negative ocean-atmosphere feedback in the South Atlantic convergence zone. Geophys Res Lett 34(18):1–5. https://doi.org/10.1029/2007gl030401

    Article  Google Scholar 

  • Depetris PJ (2007) The parana river under extreme flooding: a hydrological and hydro-geochemical insight. Interciencia 32:656–662

    Google Scholar 

  • Díaz GM, Ferreira LJ, Skansi MM (2013) Estudio de la relación entre el nivel de la napa freática y el índice de precipitación estandarizado en diferentes escalas mensuales en Argentina. V Simpósio Internacional de Climatologia, 15–19 September 2013 Florianópolis, SC, Brasil

  • Elisio M, Vera C, Miranda Leandro A (2018) Influences of ENSO and PDO phenomena on the local climate variability can drive extreme temperature and depth conditions in a Pampean shallow lake affecting fish communities Environ Biol Fish 101:1–14. https://doi.org/10.1007/s10641-018-0726-2

    Article  Google Scholar 

  • Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Folland CK, Parker DE, Colman AW, Washington R (1999) Large scale modes of ocean surface temperature since the late nineteenth century. In: Navarra A (ed) Beyond El Niño. Springer, Berlin, Heidelberg, pp 73–102

    Chapter  Google Scholar 

  • Garreaud R, Battisti DS (1999) Interannual (ENSO) and Interdecadal (ENSO-like) variability in the Southern hemisphere tropospheric circulation. J Clim 12(7):2113–2123

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195. https://doi.org/10.1016/j.palaeo.2007.10.032

    Article  Google Scholar 

  • Gatti S (2010) Melincué, su historia. Biblioteca Popular Bernardino Rivadavia. Melincué, Santa Fe, Argentina

  • Giese BS, Urizar SC, Fuc NS (2002) Southern hemisphere origins of the 1976 climate shift. Geophys Res Lett 29(2):1014. https://doi.org/10.1029/2001GL013268

    Article  Google Scholar 

  • Giorgi F (2002) Variability and trends of sub-continental scale surface climate in the twentieth century. Part I: observations. Clim Dyn 18:675–692. https://doi.org/10.1007/s00382-001-0204-x

    Article  Google Scholar 

  • Guerra L (2015) Registros de la variabilidad hidroclimatica del Holoceno tardío en la Llanura Pampeana Argentina: Limnogeología de la laguna Melincue. Ph.D. thesis, University of Cordoba, Argentina, p 222

  • Guerra L, Piovano EL, Córdoba FE et al (2015) The hydrological and environmental evolution of shallow Lake Melincué, central Argentinean Pampas, during the last millennium. J Hydrol. https://doi.org/10.1016/j.jhydrol.2015.01.002

    Google Scholar 

  • Guerra L, Piovano EL, Córdoba FE et al (2017) Climate change evidences from the end of the Little Ice Age to the Current Warm Period registered by Melincué Lake (Northern Pampas, Argentina). Quat Int. https://doi.org/10.1016/j.quaint.2016.06.033

    Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34:623–642. https://doi.org/10.1002/joc.3711)

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Hipel KW, McLeod AI (1994) Time series modelling of water resources and environmental systems, vol 45. Elsevier, Amsterdam

    Book  Google Scholar 

  • Huang HP, Seager R, Kushnir Y (2005) The 1976/77 transition in precipitation over the Americas and the influence of tropical sea surface temperature. Clim Dyn 24:721–740. https://doi.org/10.1007/s00382-005-0015-6

    Article  Google Scholar 

  • IPCC (2014) Climate change 2013—the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Iriondo M (1989) Quaternary lakes of Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 70:81–88. https://doi.org/10.1016/0031-0182(89)90081-3

    Article  Google Scholar 

  • Iriondo M, Kröhling D (2007) Geomorfología y sedimentología de la cuenca superior del río Salado (sur de Santa Fe y noroeste de Buenos Aires, Argentina). Latin Am J Sediment Basin Anal 14(1):1–23

    Google Scholar 

  • Jacques-Coper M, Garreaud RD (2015) Characterization of the 1970s climate shift in South America. Int J Climatol 35:2164–2179. https://doi.org/10.1002/joc.4120

    Article  Google Scholar 

  • Kayano MT, Capistrano VB (2014) How the Atlantic multidecadal oscillation (AMO) modifies the ENSO influence on the South American rainfall. Int J Climatol 34:162–178. https://doi.org/10.1002/joc.3674

    Article  Google Scholar 

  • Kayano MT, Pestrelo de Oliveira C, Andreoli RV (2009) Interannual relations between South American rainfall and tropical sea surface temperature anomalies before and after 1976. Int J Climatol 29:1439–1448

    Article  Google Scholar 

  • Kreimer R (1969) Descripción Hidrogeológica de la Zona de Firmat-Casilda y Cañada de Gómez. Provincia de Santa Fe. Dirección Nacional de Geología y Minería

  • Krishnamurthy V, Misra V (2010) Observed ENSO teleconnections with the South American monsoon system. Atmos Sci Lett 11:7–12. https://doi.org/10.1002/asl.245

    Google Scholar 

  • Kröhling DM (1999) Upper quaternary geology of the lower Carcarañá Basin, North Pampa, Argentina. Quat Int 57:135–148

    Article  Google Scholar 

  • Leroy SAG, Warny S, Lahijani H, Piovano EL, Fanetti D, Berger AR (2010) The role of geosciences in the mitigation of natural disasters: five case studies. Springer, Dordrecht, pp 115–147

    Google Scholar 

  • Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58(1):35–44

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079. https://doi.org/10.1175/1520-0477(1997)078%3C1069:APICOW%3E2.0.CO;2

    Article  Google Scholar 

  • Meehl GA, Hu A, Arblaster JM, Fasullo J, Trenberth KE (2013) Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J Clim 26:7298–7310

    Article  Google Scholar 

  • Miller A, Cayan D, Barnett T, Graham N, Oberhuber J (1994) The 1976–77 climate shift of the Pacific ocean. Oceanography 7(1):21–26

    Article  Google Scholar 

  • Morales MS, Carilla J, Grau HR, Villalba R (2015) Multi-century lake area changes in the Southern Altiplano: a tree-ring-based reconstruction. Clim Past 11:1139–1152. https://doi.org/10.5194/cp-11-1139-2015

    Article  Google Scholar 

  • Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Di Lorenzo E, Mantua NJ, Miller AJ, Minobe S, Nakamura H, Schneider N, Vimont DJ, Phillips A, Scott JD, Smith CA (2016) The Pacific decadal oscillation, revisited. J Clim 29(12):4399–4427

    Article  Google Scholar 

  • Paegle JN, Mo KC (2002) Linkages between summer rainfall variability over South America and sea surface temperature anomalies. J Clim 15(12):1389–1407

    Article  Google Scholar 

  • Palamedi S (2006) El Registro del cambio climático en la Región Pampeana Argentina, la Laguna Melincué. Trabajo Final de Grado. Escuela de Geología, FCEFyN, UNC, inédito

  • Pasotti P, Albert OA, Canoba CA (1984) Contribución al conocimiento de la Laguna Melincué. Publicaciones del Instituto de Fisiografía y Geología 66:1–31

    Google Scholar 

  • Pasquini AI, Depetris PJ (2010) ENSO-triggered exceptional flooding in the Paraná River: where is the excess water coming from? J Hydrol 383(3):186–193

    Article  Google Scholar 

  • Pasquini AI, Lecomte KL, Piovano EL, Depetris PJ (2006) Recent rainfall and runoff variability in central Argentina. Quat Int 158:127–139. https://doi.org/10.1016/j.quaint.2006.05.021

    Article  Google Scholar 

  • Penalba OC, Vargas WM (2004) Interdecadal and interannual variations of annual and extreme precipitation over central-northeastern Argentina. Int J Climatol 24(12):1565–1580

    Article  Google Scholar 

  • Penalba OC, Rivera JA, Pántano VC (2014) The CLARIS LPB database: constructing a long-term daily hydro-meteorological dataset for La Plata Basin, Southern South America. Geosci Data J 1(1):20–29

    Article  Google Scholar 

  • Peralta E (2003) Propuesta para la planificación del manejo sustentable de la cuenca hidrográfica y de aporte directo de la Laguna Melincué. Reportes técnicos de la Facultad de Ingeniería (Universidad Nacional de Rosario) 3:1–70

    Google Scholar 

  • Peralta EP (2017) Ordenamiento territorial ambiental de la cuenca hidrográfica y de aporte directo a la Laguna Melincué. Boletín del Instituto de Fisiografía y Geología 87:23–34 (Rosario, 10-11-2017. ISSN 1666-115X)

    Google Scholar 

  • Piovano EL, Ariztegui D, Moreiras SD (2002) Recent environmental changes in Laguna Mar Chiquita (central Argentina): a sedimentary model for a highly variable saline lake. Sedimentology 49:1371–1384. https://doi.org/10.1046/j.1365-3091.2002.00503.x

    Article  Google Scholar 

  • Piovano EL, Larizzatti FE, Fávaro DI, Oliveira SM, Damatto SR, Mazzilli BP, Ariztegui D (2004) Geochemical response of a closed-lake basin to 20th century recurring droughts/wet intervals in the subtropical Pampean Plains of South America. J Limnol 63(1):21–32

    Article  Google Scholar 

  • Piovano EL, Ariztegui D, Córdoba F, Cioccale M, Sylvestre F (2009) Hydrological variability in South America below the Tropic of Capricorn (Pampas and eastern Patagonia, Argentina) during the last 13.0 ka. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability from the last glacial maximum to the Holocene in South America and surrounding regions: from the last glacial maximum to the Holocene. Springer, Berlin, pp 323–351

    Google Scholar 

  • Quiros R, Drago E (1999) The environmental state of Argentinean lakes: an overview. Lakes Reserv Res Manag 4:55–64. https://doi.org/10.1046/j.1440-1770.1999.00076.x

    Article  Google Scholar 

  • Quirós R, Renella AM, Boveri MB et al (2002) Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. Ecol Austral 12:175–185

    Google Scholar 

  • Robertson AW, Mechoso CR (1998) Interannual and decadal cycles in river flows of southeastern South America. J Clim 11(10):2570–2581

    Article  Google Scholar 

  • Romano M, Barberis I, Pagano F, Maidagan J (2005) Seasonal and interannual variation in waterbird abundance and species composition in the Melincué saline lake, Argentina. Eur J Wildl Res 51(1):1–13

    Article  Google Scholar 

  • Romano M, Barberis I, Guerra L, Piovano E, Minotti P (2014) Sitio Ramsar Humedal Laguna Melincué: estado de situación. Acosta Hermanos, Santa Fe. ISBN 978-987-45488-0-1

    Google Scholar 

  • Russián G, Agosta E, Compagnucci R (2015) Variaciones en baja frecuencia de la precipitación estacional en la región Pampa amarilla y posibles forzantes. Meteorologica 40(1):17–42

    Google Scholar 

  • Scarpati OE, Capriolo AD (2013) Sequías e inundaciones en la provincia de Buenos Aires (Argentina) y su distribución espacio-temporal. Investigaciones Geográficas Boletín del Instituto de Geografía 2013(82):38–51

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  Google Scholar 

  • Seager R, Naik N, Baethgen W, Robertson A, Kushnir Y, Nakamura J, Jurburg S (2010) Tropical oceanic causes of interannual to multidecadal precipitation variability in southeast South America over the past century. J Clim 23(20):5517–5539

    Article  Google Scholar 

  • Silio-Calzada A, Barquín J, Huszar VL, Mazzeo N, Méndez F, Álvarez-Martínez JM (2017) Long-term dynamics of a floodplain shallow lake in the Pantanal wetland: is it all about climate? Sci Total Environ 605:527–540

    Article  Google Scholar 

  • Stutz S, Borel CM, Fontana SL, Tonello MS (2012) Holocene changes in trophic states of shallow lakes from the Pampa plain of Argentina. Holocene 22:1263–1270. https://doi.org/10.1177/0959683612446667

    Article  Google Scholar 

  • Taschetto AS, Wainer I (2008) Reproducibility of South American precipitation due to subtropical South Atlantic SSTs. J Clim 21(12):2835–2851

    Article  Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth-century SST trends in the North Atlantic. J Clim 22(6):1469–1481

    Article  Google Scholar 

  • Torrence C, Compo G (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  • Trenberth KE (1990) Recent observed interdecadal climate changes in the Northern Hemisphere. Bull Am Meteorol Soc 71(7):988–993

    Article  Google Scholar 

  • Troin M, Vallet-Coulomb C, Sylvestre F, Piovano E (2010) Hydrological modelling of a closed lake (Laguna Mar Chiquita, Argentina) in the context of 20th century climatic changes. J Hydrol 393(3):233–244

    Article  Google Scholar 

  • Troin M, Vrac M, Khodri M et al (2016) A complete hydro-climate model chain to investigate the influence of sea surface temperature on recent hydroclimatic variability in subtropical South America (Laguna Mar Chiquita, Argentina). Clim Dyn 46:1783–1798. https://doi.org/10.1007/s00382-015-2676-0

    Article  Google Scholar 

  • Venencio MV, García NO (2011) Interannual variability and predictability of water table levels at Santa Fe Province (Argentina) within the climatic change context. J Hydrol 409(1–2):62–70

    Article  Google Scholar 

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmainer D, Marengo J, Mechoso CR, Nogues-Paegle J, Silva Dias PL, Zhang C (2006) Toward a unified view of the American monsoon system. J Clim 19:4977–5000. https://doi.org/10.1175/jcli3896.1

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718. https://doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Vuille M, Burns SJ, Taylor BL et al (2012) A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Clim Past 8:1309–1321. https://doi.org/10.5194/cp-8-1309-2012

    Article  Google Scholar 

  • Zhou J, Lau K-M (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040

    Article  Google Scholar 

  • Zhou J, Lau KM (2001) Principal modes of interannual and decadal variability of summer rainfall over South America. Int J Climatol 21(13):1623–1644

    Article  Google Scholar 

  • Zimmermann ED, Riccardi GA, Arraigada M, Pieroni H (2000) Generación de series de lluvias medias areales. Erik D. Zimmermann, Gerardo A. Riccardi, Martín Arraigada, Horacio Pieroni

Download references

Acknowledgements

Part of the results of this investigation have been carried out at CICTERRA (CONICET/Universidad de Córdoba, Argentina). This study was funded by the FONCyT (PICT 2013-1371). Most of the manuscript was written at the Department of Earth Sciences, University of Geneva, Switzerland under a Swiss Government Excellence Scholarship (2017–2018). We sincerely thank the editor and the reviewers for their comments and helpful suggestions. We also thank Marcelo Romano, from the Centro de Investigaciones en Biodiversidad y Ambiente, Rosario, who shared lake level data and Don Raúl Rébora from Melincué.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucía Guerra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1

Lake Melincué Monthly area series (km2) reconstructed from the measured areas (satellite) and areas calculated from lake levels (see equation and sources of data in the text). Satellite image metadata used for area measurements is included in this appendix. (XLSX 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, L., Martini, M.A., Córdoba, F.E. et al. Multi-annual response of a Pampean shallow lake from central Argentina to regional and large-scale climate forcings. Clim Dyn 52, 6847–6861 (2019). https://doi.org/10.1007/s00382-018-4548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4548-x

Keywords

Navigation