Skip to main content
Log in

Intrinsic precursors and timescale of the tropical Indian Ocean Dipole: insights from partially decoupled numerical experiment

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The intrinsic precursors and timescale of the tropical Indian Ocean Dipole (IOD) are examined with the help of a partially coupled global experiment with decoupled SST over the tropical Pacific. The IOD does exist in the absence of sea surface temperature interannual variability in the tropical Pacific in our modeling framework, but has weaker amplitude and damped Bjerknes feedback. However, IOD variability is much more biennial in the absence than presence of El Niño Southern Oscillation, especially in the eastern equatorial Indian Ocean (IO). Such biennial rhythm results mainly from two mechanisms internal to the IO. The tropical ocean dynamics play a key role in the biennial anomalies during boreal winter with a sudden reversal of thermocline anomalies in the eastern equatorial IO forced by intraseasonal disturbances reminiscent of the Madden–Julian Oscillation (MJO). However, this preconditioning is not sufficient for triggering IOD events in the next boreal spring per se. The main trigger for pure IODs relates to tropical–extratropical interactions within the IO. Convection and diabating heating associated with negative IODs promote a Gill-type tropical response, excite mid-latitude wave-trains and subtropical blocking in the Southern Hemisphere that trigger positive subtropical IOD events during boreal winter. The latter promotes cold SST and anticyclonic circulation anomalies over the southeast IO that persist and migrate northeastward, triggering positive IOD events during the next boreal spring. Accounting for the complementary influence of tropical ocean dynamics coupled to MJO and tropical-extratropical ocean–atmosphere interactions may thus help improving IOD predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Annamalai H, Murtugudde R, Potemra J, Xie SP, Liu P, Wang B (2003) Coupled dynamics over the Indian Ocean: spring initiation of the zonal mode. Deep Sea Res II 50:2305–2330

    Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2003) A look at the relationship between the ENSO and the Indian Ocean dipole. J Meteor Soc Japan 81:41–56

    Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in the tropical atmosphere-ocean system: influences of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46:1687–1712

    Google Scholar 

  • Behera SK, Yamagata T (2001) Subtropical SST dipole events in the southern Indian Ocean. Geophys Res Lett 28:327–330

    Google Scholar 

  • Behera SK, Krishnan R, Yamagata T (1999) Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994. Geophys Res Lett 26:3001–3004

    Google Scholar 

  • Behera SK, Luo JJ, Masson S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2005) Paramount impact of the Indian Ocean dipole on the East African short rains: a CGCM study. J Clim 18:4514–4530

    Google Scholar 

  • Behera SK, Luo JJ, Masson S, Rao SA, Sakuma H, Yamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Clim 19:1608–1705

    Google Scholar 

  • Black E, Slingo J, Sperber KR (2003) An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon Wea Rev 131:74–94

    Google Scholar 

  • Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40:1–7

    Google Scholar 

  • Bracco A, Kucharski F, Molteni F (2005) Internal and forced modes of variability in the Indian Ocean. Geophys Res Lett 32:L12707. doi:10.1029/2005GL023154

    Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Google Scholar 

  • Cai W, Cowan T (2013) Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? Geophys Res Lett 40:1200–1205. doi:10.1002/grl.50208

    Google Scholar 

  • Cai W, Sullivan A, Cowan T (2009) Climate change contributes to more frequent consecutive positive Indian Ocean dipole events. Geophys Res Lett 36:L23704. doi:10.1029/2009GL040163

    Google Scholar 

  • Cai W, van Rensch P, Cowan T, Hendon HH (2011) Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate 24:3910–3923

    Google Scholar 

  • Chan SC, SK Behera, T Yamagata (2008) Indian Ocean Dipole influence on South American rainfall. Geophys Res Lett 35:L14S12. doi:10.1029/2008GL034204

  • Compo GP, Sardeshmukh P (2010) Removing ENSO-related variations from the climate records. J Clim 23:1957–1978

    Google Scholar 

  • Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28

    Google Scholar 

  • Crétat J, Terray P, Masson S, Sooraj KP, Roxy MK (2016) Indian Ocean and Indian summer monsoon: relationships without ENSO in ocean-atmosphere coupled simulations. Clim Dyn, online. doi:10.1007/s00382-016-3387-x

    Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Google Scholar 

  • Delman AS, Sprintall J, McClean JL, Talley LD (2016) Anomalous Java cooling at the initiation of positive Indian Ocean Dipole events. J Geophys Res Oc. doi:10.1002/2016JC011635

    Google Scholar 

  • Doi T, Behera SK, Yamagata T (2016) Improved seasonal prediction using the SINTEX-F2 coupled model. J Adv Mod Earth Syst 8:1847–1867

    Google Scholar 

  • Drbohlav HKL, Gualdi S, Navarra A (2007) A diagnostic study of the Indian Ocean dipole mode in El Niño and non-El Niño years. J Clim 20:2961–2977

    Google Scholar 

  • Feng M, Meyers G (2003) Interannual variability in the tropical Indian Ocean: a two-year time-scale of Indian Ocean Dipole. Deep-Sea Res II 50:2263–2284

    Google Scholar 

  • Fischer AS, Terray P, Delecluse P, Gualdi S, Guilyardi E (2005) Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J Clim 18:3428–3449

    Google Scholar 

  • Gadgil S, Vinayachandran PN, Francis PA, Gadgil S (2004) Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys Res Lett 31:L12213. doi:10.1029/2004GL019733

    Google Scholar 

  • Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116:C02024. doi:10.1029/2010JC006695

    Google Scholar 

  • Gualdi S, Guilyardi E, Navarra A, Masina S, Delecluse P (2003) The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Clim Dyn 20:567–582

    Google Scholar 

  • Guo F, Liu Q, Zheng XT, Sun S (2013) The role of barrier layer in Southeastern Arabian Sea during the development of positive Indian Ocean Dipole events. Ocean Coast Res 12:245–252

    Google Scholar 

  • Guo F, Liu Q, Sun S, Yang J (2015) Three types of Indian Ocean Dipoles. J Clim 28:3073–3092

    Google Scholar 

  • Han W, Shinoda T, Fu LL, McCreary JP (2006) Impact of atmospheric intraseasonal oscillations on the Indian Ocean dipole during the 1990s. J Phys Oceanogr 111:679–690

    Google Scholar 

  • Hastenrath S (2000) Zonal circulations over the equatorial Indian Ocean. J Clim 13:2746–2756

    Google Scholar 

  • Hastenrath S, Polzin D (2004) Dynamics of the surface wind field over the equatorial Indian Ocean. Q J R Meteorol Soc 130:503–517

    Google Scholar 

  • Hendon HH (2003) Indonesian rainfall variability: impact of ENSO and local air–sea interaction. J Clim 16:1775–1790

    Google Scholar 

  • Hong CC, Li T, LinHo Chen YC (2010) Asymmetry of the Indian Ocean basinwide SST anomalies: roles of ENSO and IOD. J Clim 23:3563–3576

    Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, de Boyer Montégut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3:168–172

    Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Google Scholar 

  • Jourdain NC, Lengaigne M, Vialard J, Izumo T, Gupta AS (2016) Further insights on the influence of the Indian Ocean Dipole on the following year’s ENSO from observations and CMIP5 models. J Clim 29:637–658

    Google Scholar 

  • Kajikawa Y, Yasunari T, Kawamura R (2003) The role of the local Hadley circulation over the Western Pacific on the zonally asymmetric anomalies over the Indian Ocean. J Meteor Soc Japan 81:259–276

    Google Scholar 

  • Kajtar JB, Santoso A, England MH, Cai W (2016) Tropical climate variability: interactions across the Pacific, Indian, and Atlantic Oceans. Clim Dyn. doi:10.1007/s00382-016-3199-z

    Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Google Scholar 

  • Krishnaswamy J, Vaidyanathan S, Rajagopalan B, Bonell M, Sankaran M, Bhalla RS, Badiger S (2015) Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. Clim Dyn 45:175–184

    Google Scholar 

  • Lau NC, Nath MJ (2000) Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4309

    Google Scholar 

  • Lau NC, Nath MJ (2003) Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episode. J Clim 16:3–20

    Google Scholar 

  • Li T, Wang B, Chang CP, Zhang YS (2003) A theory for the Indian Ocean dipole-zonal mode. J Atmos Sci 60:2119–2135

    Google Scholar 

  • Liu L, Xie SP, Zheng XT, Li T, Du Y, Huang G, Yu WD (2014) Indian Ocean variability in the CMIP5 multi-model ensemble: the zonal dipole mode. Clim Dyn 43:1715–1730

    Google Scholar 

  • Liu H, Tang Y, Chen D, Lian T (2016) Predictability of the Indian Ocean Dipole in the coupled models. Clim Dyn. doi:10.1007/s00382-016-3187-3

    Google Scholar 

  • Luo JJ, Masson S, Behera S, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497

    Google Scholar 

  • Luo JJ, Masson S, Behera S, Yamagata T (2007) Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J Clim 20:2178–2190

    Google Scholar 

  • Luo JJ, Zhang R, Behera S, Masumoto Y, Jin FF, Lukas R, Yamagata T (2010) Interactions between El Nino and extreme Indian Ocean dipole. J Clim 23:726–742

    Google Scholar 

  • Luo JJ, C Yuan, W Sasaki, SK Behera, Y Masumoto, T Yamagata, JY Lee, S Masson (2016), Current status of intraseasonal-seasonal-to-interannual prediction of the Indo-Pacific climate. In: Behera SK, Yamagata T (eds) Indo-Pacific climate variability and predictability, chapter 3, pp 63–107, World Sci Publ Co. http://www.worldscientific.com/worldscibooks/10.1142/9664

  • Luo JJ, Liu G, Hendon H, Alves O, Yamagata T (2017) Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Sci Rep. doi:10.1038/s41598-017-01479-9

    Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France. No 27. ISSN No 1288-1619

  • Masson S, Terray P, Madec G, Luo JJ, Yamagata T, Takahashi K (2012) Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim Dyn 39:681–707

    Google Scholar 

  • McPhaden MJ, Nagura M (2014) Indian Ocean dipole interpreted in terms of recharge oscillator theory. Clim Dyn 42:1569–1586

    Google Scholar 

  • Meehl GA, Arblaster JM (2002) Indian monsoon GCM sensitivity experiments testing tropospheric biennial oscillation transition conditions. J Clim 15:923–944

    Google Scholar 

  • Meehl GA, Arblaster JM, Loschnigg J (2003) Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO. J Clim 16:2138–2158

    Google Scholar 

  • Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559

    Google Scholar 

  • Morioka Y, Masson S, Terray P, Luo JJ, Yamagata T (2012) Subtropical dipole modes simulated in a coupled general circulation model. J Clim 25:4029–4047

    Google Scholar 

  • Murtugudde R, McCreary JP Jr, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J Geophys Res 105:3295–3306

    Google Scholar 

  • Prodhomme C, Terray P, Masson S, Izumo T, Tozuka T, Yamagata T (2014) Impacts of Indian Ocean SST biases on the Indian monsoon: as simulated in a global coupled model. Clim Dyn 42:271–290

    Google Scholar 

  • Prodhomme C, Terray P, Masson S, Boschat G, Izumo T (2015) Oceanic factors controlling the Indian summer monsoon onset in a coupled model. Clim Dyn 44:977–1002

    Google Scholar 

  • Rao SA, Behera SK (2005) Subsurface influence on SST in the tropical Indian Ocean: structure and interannual variability. Dyn Atmo Oceans 39:103–135

    Google Scholar 

  • Rao SA, Yamagata T (2004) Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophys Res Lett 31:L19306. doi:10.1029/2004GL020842

    Google Scholar 

  • Rao SA, Behera SK, Masumoto Y, Yamagata T (2002) Interannual subsurface variability in the Tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep-Sea Res 49:1549–1572

    Google Scholar 

  • Rao SA, Masson S, Luo JJ, Behera SK, Yamagata T (2007) Termination of Indian Ocean Dipole events in a coupled general circulation model. J Clim 20:3018–3035

    Google Scholar 

  • Rao SA, Luo JJ, Behera SK, Yamagata T (2009) Generation and termination of Indian Ocean dipole events in 2003, 2006 and 2007. Clim Dyn 33:751–767

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. doi:10.1029/2002JD002670

    Google Scholar 

  • Roeckner E, G Baüml, L Bonaventura, R Brokopf, M Esch, M Giorgetta, S Hagemann et al (2003) The atmospheric general circulation model ECHAM5: Part 1: model description. Max-Planck-Institut für Meteorologie, MPI-Report 353, Hamburg

  • Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean Dipole mode events on global climate. Clim Res 25:151–169

    Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Santoso A, England MH, Cai W (2012) Impact of Indo-Pacific feedback interactions on ENSO dynamics diagnosed using ensemble climate simulations. J Clim 25:7743–7763

    Google Scholar 

  • Schott FA, SP Xie, JP McCreary Jr (2009) Indian Ocean circulation and climate variability Rev Geophys 47:RG1002. doi:10.1029/2007RG000245

  • Shi L, Hendon HH, Alves O, Luo JJ, Balmaseda M, Anderson D (2012) How predictable is the Indian Ocean Dipole? Mon Weather Rev 140:3867–3884

    Google Scholar 

  • Shinoda T, Han W (2005) Influence of the Indian Ocean Dipole on atmospheric subseasonal variability. J Clim 18:3891–3909

    Google Scholar 

  • Shinoda T, Hendon HH, Alexander MA (2004a) Surface and subsurface dipole variability in the Indian Ocean and its relation to ENSO. Deep Sea Res 51:619–635

    Google Scholar 

  • Shinoda T, Alexander MA, Hendon HH (2004b) Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J Clim 17:362–372

    Google Scholar 

  • Spencer H, Sutton RT, Slingo JM, Roberts JM, Black E (2005) The Indian Ocean climate and dipole variability in the Hadley centre coupled GCMs. J Clim 18:2286–2307

    Google Scholar 

  • Sprintall J, Révelard A (2014) The Indonesian throughflow response to Indo-Pacific climate variability. J Geophys Res Oceans 119:1161–1175. doi:10.1002/2013JC009533

    Google Scholar 

  • Stuecker MF, Timmermann A, Yoon J, Jin F-F (2015) Tropospheric biennial oscillation (TBO) indistinguishable from white noise. Geophys Res Lett 42:7785–7791

    Google Scholar 

  • Stuecker MF, Timmermann A, Jin F-F, Chikamoto Y, Zhang W, Wittenberg AT, Widiasih E, Zhao S (2017) Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophys Res Lett 44:2481–2492

    Google Scholar 

  • Sun S, Lan J, Fang Y, Tana X Gao (2015) A triggering mechanism for the Indian Ocean dipoles independent of ENSO. J Clim 28:5063–5076

    Google Scholar 

  • Suzuki R, Behera SK, Iizuka S, Yamagata T (2004) Indian Ocean subtropical dipole simulated using a coupled general circulation model. J Geophys Res. doi:10.1029/2003JC001974

    Google Scholar 

  • Terray P (2011) Southern hemisphere extra-tropical forcing: a new para-digm for El Niño-Southern Oscillation. Clim Dyn 36:2171–2199

    Google Scholar 

  • Terray P, Dominiak S (2005) Indian Ocean sea surface temperature and El Nino and Southern Oscillation: a new perspective. J Clim 18:1351–1368

    Google Scholar 

  • Terray P, Dominiak S, Delecluse P (2005) Role of the southern Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Clim Dyn 24:169–195

    Google Scholar 

  • Terray P, Chauvin F, Douville H (2007) Impact of southeast Indian Ocean sea surface temperature anomalies on monsoon-ENSO dipole variability in a coupled ocean-atmosphere model. Clim Dyn 28:553–580

    Google Scholar 

  • Terray P, Kamala K, Masson S, Madec G, Sahai AK, Luo JJ, Yamagata T (2012) The role of the intra-daily SST variability in the Indian monsoon variability and monsoon-ENSO–IOD relationships in a global coupled model. Clim Dyn 39:729–754

    Google Scholar 

  • Terray P, Masson S, Prodhomme C, Roxy MK, Sooraj KP (2016) Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework. Clim Dyn 46:2507–2533

    Google Scholar 

  • Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Duliere V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice-ocean model. Ocean Model 8(1–2):175–201

    Google Scholar 

  • Tozuka T, Luo JJ, Masson S, Yamagata T (2007) Decadal modulations of the Indian Ocean dipole in the SINTEX-F1 coupled GCM. J Clim 20:2881–2894

    Google Scholar 

  • Ummenhofer CC, England MH, Meyers GA, McIntosh PC, Pook MJ, Risbey JS, Sen Gupta A, Taschetto AS (2009) What causes southeast Australia’s worst droughts? Geophys Res Lett 36:L04706. doi:10.1029/2008GL036801

    Google Scholar 

  • Valcke S (2006) OASIS3 user guide (prism_2-5). PRISM support initiative report No 3, p 64

  • Vinayachandran PN, Saji NH, Yamagata T (1999) Response of the equatorial Indian Ocean to an unusual wind event during 1994. Geophys Res Lett 26:1613–1616

    Google Scholar 

  • Wallace JM, Smith C, Jiang Q (1990) Spatial patterns of ocean–atmosphere interaction in the northern winter. J Clim 3:990–998

    Google Scholar 

  • Wang X, Wang C (2014) Different impacts of various El Niño events on the Indian Ocean Dipole. Clim Dyn 42:991–1005

    Google Scholar 

  • Wang J, Yuan D (2015) Roles of western and eastern boundary reflections in the interannual sea level variations during negative Indian Ocean Dipole events. J Phys Ocean 45:1804–1821

    Google Scholar 

  • Wang H, Murtugudde R, Kumar A (2016) Evolution of Indian Ocean dipole and its forcing mechanisms in the absence of ENSO. Clim Dyn. doi:10.1007/s00382-016-2977-y

    Google Scholar 

  • Webster PJ, Hoyos CD (2010) Beyond the spring barrier? Nat Geosci 3:152–153

    Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360

    Google Scholar 

  • Xie S-P, Annamalai H, Schott F, McCreary JP Jr (2002) Origin and predictability of South Indian Ocean climate variability. J Clim 15:864–874

    Google Scholar 

  • Yamagata T, SK Behera, JJ Luo, S Masson, MR Jury, SA Rao (2004) Coupled ocean-atmosphere variability in the tropical Indian Ocean. In: Wang C, Xie SP, Carton JA (eds) Geophysical Monograph Series, vol 147, p 414

  • Yang Y, Xie SP, Wu L, Kosoka Y, Lau NC, Vecchi GA (2015) Seasonality and predictability of the Indian Ocean Dipole mode: eNSO forcing and internal variability. J Clim 28:8021–8036

    Google Scholar 

  • Yu J, Lau KM (2005) Contrasting Indian Ocean SST variability with and without ENSO influence: a coupled atmosphere-ocean GCM study. Meteor Atmos Phys. doi:10.1007/s00703-004-0094-7

    Google Scholar 

  • Yu W, Xiang B, Liu L, Liu N (2005) Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys Res Lett 32:L24706. doi:10.1029/2005GL024327

    Google Scholar 

  • Yuan D, Liu H (2009) Long wave dynamics of sea level variations during Indian Ocean dipole events. J Phys Oceanogr 39:1115–1132

    Google Scholar 

  • Yuan DL et al (2011) Forcing of the Indian Ocean Dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian Throughflow. J Clim 24:3593–3608

    Google Scholar 

  • Zhang Y, Norris JR, Wallace JM (1998) Seasonality of large scale atmosphere–ocean interaction over the North Pacific. J Clim 11:2473–2481

    Google Scholar 

  • Zhao YP, Chen YL, Wang F, Bai XZ, Wu AM (2009) Two modes of dipole events in tropical Indian Ocean. Sci China Ser D-Earth Sci 52:369–381

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Earth System Science Organization, Ministry of Earth Sciences, Government of India under Monsoon Mission (Project No. MM/SERP/CNRS/2013/INT-10/002 Contribution #MM/PASCAL/RP/07. This work was performed using HPC resources from GENCI-IDRIS (Grants 2015, 2016, 2017—016895). We thank the three anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Crétat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crétat, J., Terray, P., Masson, S. et al. Intrinsic precursors and timescale of the tropical Indian Ocean Dipole: insights from partially decoupled numerical experiment. Clim Dyn 51, 1311–1332 (2018). https://doi.org/10.1007/s00382-017-3956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3956-7

Keywords

Navigation