Skip to main content

Advertisement

Log in

Non-linear interactions between \(\hbox {CO}_2\) radiative and physiological effects on Amazonian evapotranspiration in an Earth system model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We present a detailed analysis of mechanisms underlying the evapotranspiration response to increased \(\hbox {CO}_2\) in HadGEM2-ES, focussed on western Amazonia. We use three simulations from CMIP5 in which atmospheric \(\hbox {CO}_2\) increases at 1% per year reaching approximately four times pre-industrial levels after 140 years. Using 3-hourly data, we found that evapotranspiration (ET) change was dominated by decreased stomatal conductance (\(g_s\)), and to a lesser extent by decreased canopy water and increased moisture gradient (specific humidity difference between surface and near-surface). There were large, non-linear decreases in ET in the simulation in which radiative and physiological forcings could interact. This non-linearity arises from non-linearity in the conductance term (includes aerodynamic and stomatal resistance and partitioning between the two, which is determined by canopy water availability), the moisture gradient, and negative correlation between these two terms. The conductance term is non-linear because GPP responds non-linearly to temperature and GPP is the dominant control on \(g_s\) in HadGEM2-ES. In addition, canopy water declines, mainly due to increases in potential evaporation, which further decrease the conductance term. The moisture gradient responds non-linearly owing to the non-linear response of temperature to \(\hbox {CO}_2\) increases, which increases the Bowen ratio. Moisture gradient increases resulting from ET decline increase ET and thus constitute a negative feedback. This analysis highlights the importance of the \(g_s\) parametrisation in determining the ET response and the potential differences between offline and online simulations owing to feedbacks on ET via the atmosphere, some of which would not occur in an offline simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224–232

    Article  Google Scholar 

  • Andrews T, Doutriaux-Boucher M, Boucher O, Forster PM (2011) A regional and global analysis of carbon dioxide physiological forcing and its impact on climate. Clim Dyn 36(3–4):783–792

    Article  Google Scholar 

  • Arora VK, Boer GJ, Friedlingstein P, Eby M, Jones CD, Christian JR, Bonan G, Bopp L, Brovkin V, Cadule P et al (2013) Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. J Clim 26(15):5289–5314

    Article  Google Scholar 

  • Best M (2005) Jules technical documentation. Tech rep, Met Office, Joint Centre for Hydro-Meteorological Research

  • Best M, Pryor M, Clark D, Rooney G, Essery R, Ménard C, Edwards J, Hendry M, Porson A, Gedney N et al (2011) The joint uk land environment simulator (jules), model description-part 1: energy and water fluxes. Geosci Model Dev 4(3):677–699

    Article  Google Scholar 

  • Betts R, Golding N, Gonzalez P, Gornall J, Kahana R, Kay G, Mitchell L, Wiltshire A (2015) Climate and land use change impacts on global terrestrial ecosystems and river flows in the hadgem2-es earth system model using the representative concentration pathways. Biogeosciences 12(5):1317–1338

    Article  Google Scholar 

  • Betts R, Cox P, Collins M, Harris P, Huntingford C, Jones C (2004) The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor Appl Clim 78(1–3):157–175. doi:10.1007/s00704-004-0050-y, 2nd Large-Scale Biosphere-Atmosphere Science Conference, Manaus, BRAZIL, 07-10 Jul 2002

  • Betts RA, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387:796–799

    Article  Google Scholar 

  • Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemming DL, Huntingford C, Jones CD, Sexton DM et al (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448(7157):1037–1041

    Article  Google Scholar 

  • de Boer HJ, Lammertsma EI, Wagner-Cremer F, Dilcher DL, Wassen MJ, Dekker SC (2011) Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO\(_2\). Proc Natl Acad Sci 108(10):4041–4046

    Article  Google Scholar 

  • Boisier J, Halladay K, Kay G, Ciais P, Good P (2014) Report on quantifying sensitivity of regional climate of amazonia to feedbacks from CO\(_2\) physiological forcing. Technical report, AMAZALERT delivery report D3.2

  • Booth BBB, Jones CD, Collins M, Totterdell IJ, Cox PM, Sitch S, Huntingford C, Betts RA, Harris GR, Lloyd J (2012) High sensitivity of future global warming to land carbon cycle processes. Environ Res Lett. doi:10.1088/1748-9326/7/2/024002

    Google Scholar 

  • Boucher O, Jones A, Betts RA (2009) Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3. Clim Dyn 32(2–3):237–249. doi:10.1007/s00382-008-0459-6

    Article  Google Scholar 

  • Brienen RJ, Phillips O, Feldpausch T, Gloor E, Baker T, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis S et al (2015) Long-term decline of the amazon carbon sink. Nature 519(7543):344–348

    Article  Google Scholar 

  • Cao L, Bala G, Caldeira K, Nemani R, Ban-Weiss G (2009) Climate response to physiological forcing of carbon dioxide simulated by the coupled community atmosphere model (CAM3. 1) and community land model (CLM3. 0). Geophys Res Lett 36(10):10402

    Article  Google Scholar 

  • Cao L, Bala G, Caldeira K, Nemani R, Ban-Weiss G (2010) Importance of carbon dioxide physiological forcing to future climate change. Proc Natl Acad Sci 107(21):9513–9518

    Article  Google Scholar 

  • Cao L, Bala G, Caldeira K (2012) Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environ Res Lett 7(3):034015

    Article  Google Scholar 

  • Clark D, Mercado L, Sitch S, Jones C, Gedney N, Best M, Pryor M, Rooney G, Essery R, Blyth E et al (2011) The joint uk land environment simulator (jules), model description-part 2: carbon fluxes and vegetation dynamics. Geosci Model Dev 4(3):701–722

    Article  Google Scholar 

  • Collins W, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones C, Joshi M, Liddicoat S et al (2011) Development and evaluation of an earth-system model-HadGEM2. Geosci Model Dev 4(4):1051–1075

    Article  Google Scholar 

  • Cox P (2001) Description of the triffid dynamics global vegetation model, tech. Tech rep, Note 24, Tech rep, Hadley Centre, Met Office. http://www.metoffice.com/publications/HCTN

  • Cox P, Betts R, Bunton C, Essery R, Rowntree P, Smith J (1999) The impact of new land surface physics on the gcm simulation of climate and climate sensitivity. Clim Dyn 15(3):183–203

    Article  Google Scholar 

  • Davie J, Falloon P, Kahana R, Dankers R, Betts R, Portmann F, Wisser D, Clark D, Ito A, Masaki Y et al (2013) Comparing projections of future changes in runoff from hydrological and biome models in isi-mip. Earth Syst Dyn 4:359–374

    Article  Google Scholar 

  • Doughty CE, Goulden ML (2008) Are tropical forests near a high temperature threshold? J Geophys Res Biogeosci 113(G1):G00B07 (2005–2012)

    Google Scholar 

  • Doutriaux-Boucher M, Webb M, Gregory JM, Boucher O (2009) Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys Res Lett 36(2):02703

    Article  Google Scholar 

  • Essery R, Best M, Betts R, Cox PM, Taylor CM (2003) Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J Hydrometeorol 4(3):530–543

    Article  Google Scholar 

  • Field CB, Jackson RB, Mooney HA (1995) Stomatal responses to increased CO\(_2\): implications from the plant to the global scale. Plant Cell Environ 18(10):1214–1225

    Article  Google Scholar 

  • Gedney N, Valdes PJ (2000) The effect of amazonian deforestation on the northern hemisphere circulation and climate. Geophys Res Lett 27(19):3053–3056

    Article  Google Scholar 

  • Good P, Jones C, Lowe J, Betts R, Gedney N (2013) Comparing tropical forest projections from two generations of hadley centre earth system models, HadGEM2-ES and HadCM3LC. J Clim 26(2):495–511. doi:10.1175/JCLI-D-11-00366.1

    Article  Google Scholar 

  • Good P, Lowe JA, Andrews T, Wiltshire A, Chadwick R, Ridley JK, Menary MB, Bouttes N, Dufresne JL, Gregory JM, Schaller N, Shiogama H (2015) Nonlinear regional warming with increasing CO\(_2\) concentrations. Nat Clim Chang 5(2):138–142. doi:10.1038/NCLIMATE2498

    Article  Google Scholar 

  • Harper A, Cox P, Friedlingstein P, Wiltshire A, Jones C, Sitch S, Mercado LM, Groenendijk M, Robertson E, Kattge J, Bnisch G, Atkin OK, Bahn M, Cornelissen J, Niinemets Onipchenko V, Peuelas J, Poorter L, Reich PB, Soudzilovskaia N, van Bodegom P (2016) Improved representation of plant functional types and physiology in the joint UK land environment simulator (JULES v4.2) using plant trait information. Geosci Model Dev 1–64. doi:10.5194/gmd-2016-22. http://www.geosci-model-dev-discuss.net/gmd-2016-22/ (discussions 2016)

  • Joetzjer E, Douville H, Delire C, Ciais P (2013) Present-day and future amazonian precipitation in global climate models: CMIP5 versus CMIP3. Clim Dyn 41(11–12):2921–2936. doi:10.1007/s00382-012-1644-1

    Article  Google Scholar 

  • Jones C, Hughes J, Bellouin N, Hardiman S, Jones G, Knight J, Liddicoat S, O’Connor F, Andres RJ, Bell C et al (2011) The hadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570

    Article  Google Scholar 

  • Kergoat L, Lafont S, Douville H, Berthelot B, Dedieu G, Planton S, Royer JF (2002) Impact of doubled CO\(_2\) on global-scale leaf area index and evapotranspiration: conflicting stomatal conductance and LAI responses. J Geophys Res Atmos 107(D24):4808

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628

    Article  Google Scholar 

  • Malhi Y, Pegoraro E, Nobre A, Pereira M, Grace J, Culf A, Clement R (2002) Energy and water dynamics of a central amazonian rain forest. J Geophys Res Atmos 107(D20):45 (1984–2012)

    Article  Google Scholar 

  • Malhi Y, Aragão LE, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the amazon rainforest. Proc Natl Acad Sci 106(49):20610–20615

    Article  Google Scholar 

  • Martin G, Bellouin N, Collins W, Culverwell I, Halloran P, Hardiman S, Hinton T, Jones C, McDonald R, McLaren A, O’Connor F et al (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4(3):723–757

    Article  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458(7241):1014–1017

    Article  Google Scholar 

  • Mooney H, Drake B, Luxmoore R, Oechel W, Pitelka L (1991) Predicting ecosystem responses to elevated CO\(_2\) concentrations. BioScience 41(2):96–104

    Article  Google Scholar 

  • Norby RJ, De Kauwe MG, Domingues TF, Duursma RA, Ellsworth DS, Goll DS, Lapola DM, Luus KA, MacKenzie AR, Medlyn BE et al (2016) Model-data synthesis for the next generation of forest free-air CO\(_2\) enrichment (face) experiments. N Phytol 209(1):17–28

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG et al (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993

    Article  Google Scholar 

  • Phillips OL, Aragão LE, Lewis SL, Fisher JB, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada CA et al (2009) Drought sensitivity of the amazon rainforest. Science 323(5919):1344–1347

    Article  Google Scholar 

  • Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudré N, Labat D, Zaehle S (2007) Changes in climate and land use have a larger direct impact than rising CO\(_2\) on global river runoff trends. Proc Natl Acad Sci 104(39):15242–15247

    Article  Google Scholar 

  • Richardson TB, Forster PM, Andrews T, Parker DJ (2016) Understanding the rapid precipitation response to CO\(_2\) and aerosol forcing on a regional scale. J Clim 29:583–594

    Article  Google Scholar 

  • Rogers A, Medlyn B, Dukes J, Bonan G, von Caemmerer S, Dietze M, Mercado L, Niinemets U, Prentice C, Serbin S, Sitch S, Way D, Zaehle S (2016) A roadmap for improving the representation of photosynthesis in earth system models. New Phytol (in press)

  • Rowland L, Harper A, Christoffersen BO, Galbraith DR, Imbuzeiro H, Powell T, Doughty C, Levine N, Malhi Y, Saleska S et al (2015) Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses. Geosci Model Dev 8:1097–1110

    Article  Google Scholar 

  • Sellers P, Bounoua L, Collatz G, Randall D, Dazlich D, Los S, Berry J, Fung I, Tucker C, Field C et al (1996) Comparison of radiative and physiological effects of doubled atmospheric CO\(_2\) on climate. Science 271:1402–1406

    Article  Google Scholar 

  • Shukla J, Nobre C, Sellers P et al (1990) Amazon deforestation and climate change. Science 247:1322–1325

    Article  Google Scholar 

  • Sitch S, Cox P, Collins W, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448(7155):791–794

    Article  Google Scholar 

  • Spracklen DV, Arnold SR, Taylor C (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature 489(7415):282–285

    Article  Google Scholar 

  • Stickler CM, Coe MT, Costa MH, Nepstad DC, McGrath DG, Dias LC, Rodrigues HO, Soares-Filho BS (2013) Dependence of hydropower energy generation on forests in the amazon basin at local and regional scales. Proc Natl Acad Sci 110(23):9601–9606

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Tor-ngern P, Oren R, Ward EJ, Palmroth S, McCarthy HR, Domec JC (2015) Increases in atmospheric CO\(_2\) have little influence on transpiration of a temperate forest canopy. N Phytol 205(2):518–525

    Article  Google Scholar 

  • Trenberth KE (1999) Atmospheric moisture recycling: role of advection and local evaporation. J Clim 12(5):1368–1381

    Article  Google Scholar 

  • Warren JM, Pötzelsberger E, Wullschleger SD, Thornton PE, Hasenauer H, Norby RJ (2011) Ecohydrologic impact of reduced stomatal conductance in forests exposed to elevated CO\(_2\). Ecohydrology 4(2):196–210

    Article  Google Scholar 

  • Werth D, Avissar R (2004) The regional evapotranspiration of the amazon. J Hydrometeorol 5(1):100–109

    Article  Google Scholar 

  • Willeit M, Ganopolski A, Feulner G (2014) Asymmetry and uncertainties in biogeophysical climate-vegetation feedback over a range of CO\(_2\) forcings. Biogeosciences 11(1):17–32

    Article  Google Scholar 

  • Wullschleger SD, Gunderson C, Hanson P, Wilson K, Norby R (2002) Sensitivity of stomatal and canopy conductance to elevated CO\(_2\) concentration-interacting variables and perspectives of scale. N Phytol 153(3):485–496

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to R. Betts and J. P. Boisier for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Halladay.

Appendix: Correlation effect

Appendix: Correlation effect

$$\begin{aligned} ET = x * y \end{aligned}$$

Writing as mean and anomalies:

$$\begin{aligned} x&=\, \bar{x} + dx\\ y&=\, \bar{y} + dy \end{aligned}$$

where dx is anomaly w.r.t time mean \(\bar{x}\) and dy is anomaly w.r.t time mean \(\bar{y}\).

So

$$\begin{aligned} ET&=\, (\bar{x}+dx)*(\bar{y}+dy)\\ &=\, \bar{x}*\bar{y} + \bar{x}*dy + \bar{y}*dx + dx*dy \end{aligned}$$

Taking the time mean:

$$\begin{aligned} \overline{ET} = \overline{x}*\overline{y} + \overline{dx*dy} \end{aligned}$$

(as time means of dx and dy are zero by definition).

If \(corr(x,y) > 0\) then \(\overline{dx*dy} > 0\) and \(\overline{ET} > \bar{x}*\bar{y}\).

If \(corr(x,y) < 0\) then \(\overline{dx*dy} < 0\) and \(\overline{ET} < \bar{x}*\bar{y}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halladay, K., Good, P. Non-linear interactions between \(\hbox {CO}_2\) radiative and physiological effects on Amazonian evapotranspiration in an Earth system model. Clim Dyn 49, 2471–2490 (2017). https://doi.org/10.1007/s00382-016-3449-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3449-0

Keywords

Navigation