Skip to main content

Advertisement

Log in

Forced response and internal variability of summer climate over western North America

Climate Dynamics Aims and scope Submit manuscript

Abstract

Over the past decade, anomalously hot summers and persistent droughts frequented over the western United States (wUS), the condition similar to the 1950s and 1960s. While atmospheric internal variability is important for mid-latitude interannual climate variability, it has been suggested that anthropogenic external forcing and multidecadal modes of variability in sea surface temperature, namely, the Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO), also affect the occurrence of droughts and hot summers. In this study, 100-member ensemble simulations for 1951–2010 by an atmospheric general circulation model were used to explore relative contributions of anthropogenic warming, atmospheric internal variability, and atmospheric response to PDO and AMO to the decadal anomalies over the wUS. By comparing historical and sensitivity simulations driven by observed sea surface temperature, sea ice, historical forcing agents, and non-warming counterfactual climate forcing, we found that large portions of recent increases in mean temperature and frequency of hot summers (66 and 82 %) over the wUS can be attributed to the anthropogenic global warming. In contrast, multidecadal change in the wUS precipitation is explained by a combination of the negative PDO and the positive AMO after the 2000s. Diagnostics using a linear baroclinic model indicate that AMO- and PDO-related diabatic heating anomalies over the tropics contribute to the anomalous atmospheric circulation associated with the droughts and hot summers over wUS on multidecadal timescale. Those anomalies are not robust during the periods when PDO and AMO are in phase. The prolonged PDO–AMO antiphase period since the late twentieth century resulted in the substantial component of multidecadal anomalies in temperature and precipitation over the wUS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Brewer M, Mass C (2016) Projected changes in heat extremes and associated synoptic/mesoscale conditions over the northwest U.S. J Clim. doi:10.1175/JCLI-D-15-0641.1

    Google Scholar 

  • Brönnimann S, Fischer AM, Rozanov E, Poli P, Compo GP, Sardeshmukh PD (2015) Southward shift of the northern tropical belt from 1945 to 1980. Nat Geosci 8:969–974

    Article  Google Scholar 

  • Burgman RJ, Jang Y (2015) Simulated U.S. drought response to interannual and decadal Pacific SST variability. J Clim 28:4688–4705

    Article  Google Scholar 

  • Chikamoto Y, Timmermann A, Stevenson S, DiNezio P, Langford S (2015) Decadal predictability of soil water, vegetation, and wildfire frequency over North America. Clim Dyn 45:2213–2235

    Article  Google Scholar 

  • Christidis N, Stott PA (2014) Change in the odds of warm years and seasons due to anthropogenic influence on the climate. J Clim 27:2607–2621

    Article  Google Scholar 

  • Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions, causes and consequences. Earth Sci Rev 81:93–134

    Article  Google Scholar 

  • Cook BI, Cook ER, Anchukaitis KJ, Seager R, Miller RL (2011) Forced and unforced variability of twentieth century North American droughts and pluvials. Clim Dyn 37:1097–1110

    Article  Google Scholar 

  • Dai A (2013) The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Clim Dyn 41:633–646

    Article  Google Scholar 

  • Delworth TL, Zeng F, Rosati A, Vecchi G, Wittenberg A (2015) A link between the hiatus in global warming and North American drought. J Clim 28:3834–3845

    Article  Google Scholar 

  • Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Clim 17:3109–3124

    Article  Google Scholar 

  • Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Change 2:775–779

    Article  Google Scholar 

  • Diffenbaugh NS, Swain DL, Touma D (2015) Anthropogenic warming has increased drought risk in California. Proc Natl Acad Sci USA 112:3931–3936

    Article  Google Scholar 

  • Ding Q, Wallace JM, Battisti DS, Steig EJ, Gallant AJE, Kim H-J, Geng L (2014) Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509:209–212

    Article  Google Scholar 

  • Endo H, Kitoh A, Ose T, Mizuta R, Kusunoki S (2012) Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J Geophys Res 117:D16118. doi:10.1029/2012JD017874

    Article  Google Scholar 

  • England MH et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227

    Article  Google Scholar 

  • Eyring V et al (2005) A strategy for process-oriented validation of coupled chemistry-climate models. Bull Am Meteorol Soc 86:1117–1133

    Article  Google Scholar 

  • Feng S, Hu Q, Oglesby RJ (2011) Influence of Atlantic sea surface temperatures on persistent drought in North America. Clim Dyn 37:569–586. doi:10.1007/s00382-010-0835-x

    Article  Google Scholar 

  • Fyfe JC et al (2016) Making sense of the early-2000s warming slowdown. Nat Clim Change 6:224–228

    Article  Google Scholar 

  • Gu F, Adler RF, Huffman GJ (2016) Long-term changes/trends in surface temperature and precipitation during the satellite era (1979–2012). Clim Dyn 46:1091–1105

    Article  Google Scholar 

  • Hagos S et al (2010) Estimates of tropical diabatic heating profiles: commonalities and uncertainties. J Clim 23:542–558

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci USA 109:E2415–E2423

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107

    Article  Google Scholar 

  • Hirahara S, Ishii M, Fukuda Y (2014) Centennial-scale sea surface temperature analysis and its uncertainty. J Clim 27:57–75

    Article  Google Scholar 

  • Hoerling M, Eischeid J, Perlwitz J (2010) Regional precipitation trends: distinguishing natural variability from anthropogenic forcing. J Clim 23:2131–2145

    Article  Google Scholar 

  • Hu Q, Feng S (2012) AMO- and ENSO-driven summertime circulation and precipitation variations in North America. J Clim 25:6477–6495

    Article  Google Scholar 

  • Hu Q, Feng S, Oglesby RJ (2011) Variations in North American summer precipitation driven by the Atlantic Multidecadal Oscillation. J Clim 24:5555–5570

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Cambridge Univ Press, Cambridge, pp 3–29. doi:10.1017/cbo9781107415324.004

    Google Scholar 

  • Jones GS, Stott PA, Christidis N (2013) Attribution of observed historical near surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. J Geophys Res Atmos 118:4001–4024. doi:10.1002/jgrd.50239

    Article  Google Scholar 

  • Kamae Y, Shiogama H, Watanabe M, Kimoto M (2014a) Attributing the increase in Northern Hemisphere hot summers since the late 20th century. Geophys Res Lett 41:5192–5199

    Article  Google Scholar 

  • Kamae Y, Watanabe M, Kimoto M, Shiogama H (2014b) Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate—Part I: Past changes and future projections. Clim Dyn 43:2553–2568

    Article  Google Scholar 

  • Kamae Y, Shiogama H, Watanabe M, Ishii M, Ueda H, Kimoto M (2015) Recent slowdown of tropical upper tropospheric warming associated with Pacific climate variability. Geophys Res Lett 42:2995–3003

    Article  Google Scholar 

  • Kobayashi S et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48

    Article  Google Scholar 

  • Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407

    Article  Google Scholar 

  • Kushnir Y, Seager R, Ting MF, Naik N, Nakamura J (2010) Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J Clim 23:5610–5628

    Article  Google Scholar 

  • Kusunoki S, Arakawa O (2012) Change in the precipitation intensity of the East Asian summer monsoon projected by CMIP3 models. Clim Dyn 38:2055–2072

    Article  Google Scholar 

  • Langford S, Stevenson S, Noone D (2014) Analysis of low-frequency precipitation variability in CMIP5 historical simulations for southwestern North America. J Clim 27:2735–2756

    Article  Google Scholar 

  • Li X, Xie S-P, Gille ST, Yoo C (2016) Atlantic-induced pan-tropical climate change over the past three decades. Nat Clim Change 6:275–279

    Article  Google Scholar 

  • Luo JJ, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci USA 109:18701–18706

    Article  Google Scholar 

  • Madden RA (1976) Estimates of the natural variability of time-averaged sea-level pressure. Mon Wea Rev 104:942–952

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • McGregor S et al (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892

    Article  Google Scholar 

  • Meehl GA, Hu AX (2006) Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J Clim 19:1605–1623

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Tebaldi C (2007) Contributions of natural and anthropogenic forcing to changes in temperature extremes over the U.S. Geophys Res Lett 34:L19709. doi:10.1029/2007GL030948

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Branstator G (2012) Mechanisms contributing to the warming hole and the consequent U.S. east–west differential of heat extremes. J Clim 25:6394–6408

    Article  Google Scholar 

  • Mei W, Xie S-P, Zhao M (2014) Variability of tropical cyclone track density in the North Atlantic: observations and high-resolution simulations. J Clim 27:4797–4814

    Article  Google Scholar 

  • Mei W, Xie S-P, Zhao M, Wang Y (2015) Forced and internal variability of tropical cyclone track density in the western North Pacific. J Clim 28:143–167

    Article  Google Scholar 

  • Mizuta R, Yoshimura H, Murakami H, Matsueda M, Endo H, Ose T, Kamiguchi K, Hosaka M, Sugi M, Yukimoto S, Kusunoki S, Kitoh A (2012) Climate simulations using MRI-AGCM with 20-km grid. J Meteorol Soc Jpn 90A:235–260

    Article  Google Scholar 

  • Mizuta R et al (2016) Over 5000 years of ensemble future climate simulations by 60 km global and 20 km regional atmospheric models. Bull Am Meteorol Soc (submitted)

  • Mo K, Schemm J, Yoo S (2009) Influence of ENSO and the Atlantic multidecadal oscillation on drought over the United States. J Clim 22:5962–5982

    Article  Google Scholar 

  • Mohino E, Janicot S, Bader J (2011) Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim Dyn 37:419–440

    Article  Google Scholar 

  • Mori M, Watanabe M, Shiogama H, Inoue J, Kimoto M (2014) Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat Geosci 7:869–873

    Article  Google Scholar 

  • Mueller B, Seneviratne SL (2012) Hot days induced by precipitation deficits at the global scale. Proc Natl Acad Sci USA 109:12398–12403

    Article  Google Scholar 

  • Murakami H, Mizuta R, Shindo E (2012) Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Clim Dyn 39:2569–2584

    Article  Google Scholar 

  • Nakaegawa T, Kitoh A, Murakami H, Kusunoki S (2014) Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late twenty-first century projected by an atmospheric general circulation model with three different horizontal resolutions. Theor Appl Climatol 116:155–168

    Article  Google Scholar 

  • Newman M et al (2016) The Pacific decadal oscillation, revisited. J Clim 29:4399–4427

    Article  Google Scholar 

  • Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett 39:L20714. doi:10.1029/2012GL053361

    Article  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Interdecadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324

    Article  Google Scholar 

  • Prein AF, Holland GJ, Rasmussen RM, Clark MP, Tye MR (2016) Running dry: the U.S. Southwest’s drift into a drier climate state. Geophys Res Lett 43:1272–1279

    Article  Google Scholar 

  • Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Seager R, Hoerling M (2014) Atmosphere and ocean origins of North American droughts. J Clim 27:4581–4606

    Article  Google Scholar 

  • Seager R, Kushnir Y, Herweijer C, Naik N, Velez J (2005) Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J Clim 18:4068–4091

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161

    Article  Google Scholar 

  • Sheffield J et al (2013) North American climate in CMIP5 experiments. Part II: evaluation of historical simulations of intraseasonal to decadal variability. J Clim 26:9247–9290

    Article  Google Scholar 

  • Shibata K, Deushi M, Sekiyama TT, Yoshimura H (2005) Development of an MRI chemical transport model for the study of stratospheric chemistry. Pap Meteor Geophys 55:75–118

    Article  Google Scholar 

  • Shige S, Takayabu YN, Tao W-K (2008) Spectral retrieval of latent heating profiles from TRMM PR data. Part III: estimating apparent moisture sink profiles over tropical oceans. J Appl Meteorol Climatol 47:620–640

    Article  Google Scholar 

  • Shiogama H, Watanabe M, Imada Y, Mori M, Kamae Y, Ishii M, Kimoto M (2014) Attribution of the June–July 2013 heat wave in the southwestern United States. SOLA 10:122–126

    Article  Google Scholar 

  • Shiogama H et al (2016) Attributing historical changes in probabilities of record-breaking daily temperature and precipitation extreme events. SOLA 12:225–231

    Article  Google Scholar 

  • Sippel S, Zscheischler J, Heimann M, Otto FEL, Peters J, Mahecha MD (2015) Quantifying changes in climate variability and extremes: pitfalls and their overcoming. Geophys Res Lett 42:9990–9998

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling for the North Atlantic Ocean. J Clim 20:891–907

    Article  Google Scholar 

  • Ting M, Wang H (1997) Summertime US precipitation variability and its relation to Pacific sea surface temperature. J Clim 10:1853–1873

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. doi:10.1029/2006GL026894

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Branstator G, Phillips S (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Change 4:911–916

    Article  Google Scholar 

  • Ueda H, Kamae Y, Hayasaki M, Kitoh A, Watanabe A, Miki Y, Kumai A (2015) Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon. Nat Commun 6:8854

    Article  Google Scholar 

  • Wallace JM, Deser C, Smoliak BV, Phillips AS (2015) Attribution of climate change in the presence of internal variability. In: Chang CP, Ghil M, Latif M, Wallace JM (eds) Climate change: multidecadal and beyond: World Scientific series on Asia-Pacific weather and climate, vol 6. World Scientific Publishing, Singapore, pp 1–29

    Google Scholar 

  • Wang H, Schubert S (2014) The precipitation response over the continental United States to cold tropical Pacific sea surface temperatures. J Clim 27:5036–5055

    Article  Google Scholar 

  • Wang B, Liu J, Kim HJ, Webster PJ, Yim SY, Xiang B (2013) Northern Hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation. Proc Natl Acad Sci USA 110:5347–5352

    Article  Google Scholar 

  • Watanabe M, Kimoto M (2000) Atmosphere–ocean thermal coupling in the North Atlantic: a positive feedback. Q J Roy Meteorol Soc 126:3343–3369

    Article  Google Scholar 

  • Watanabe M, Shiogama H, Tatebe H, Hayashi M, Ishii M, Kimoto M (2014) Contribution of natural decadal variability to global-warming acceleration and hiatus. Nat Clim Change 4:893–897

    Article  Google Scholar 

  • Xie S-P, Xu H, Saji NH, Wang Y, Liu WT (2006) Role of narrow mountains in large-scale organization of Asian monsoon convection. J Clim 19:3420–3429

    Article  Google Scholar 

  • Xie S-P et al (2015) Towards predictive understanding of regional climate change. Nat Clim Change 5:921–930

    Article  Google Scholar 

  • Yanai M, Tomita T (1998) Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. J Clim 11:463–482

    Article  Google Scholar 

  • Yoon J-H, Leung LR (2015) Assessing the relative influence of surface soil moisture and ENSO SST on precipitation predictability over the contiguous United States. Geophys Res Lett 42:5005–5013

    Article  Google Scholar 

  • Yukimoto S et al (2011) Meteorological research institute-earth system model v1 (MRI-ESM1)—model description. In: Tech Rep Meteor Res Inst 64, p 88. http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_64/index_en.html

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267

    Article  Google Scholar 

  • Zhang X, Hegerl G, Zwiers F, Kenyon J (2005) Avoiding inhomogeneity in percentile-based indices of temperature extremes. J Clim 18:1641–1651

    Article  Google Scholar 

  • Zhou Y, Wu Z (2016) Possible impacts of mega-El Niño/Southern Oscillation and Atlantic multidecadal oscillation on Eurasian heat wave frequency variability. Q J Roy Meteorol Soc 142:1647–1661

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank anonymous reviewers for giving us constructive comments. This work was supported by the Program for Risk Information on Climate Change (SOUSEI program) and the Data Integration and Analysis System (DIAS) sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The Earth Simulator was used to develop the d4PDF ensemble dataset as “Strategic Project with Special Support” of JAMSTEC. The d4PDF dataset is available via DIAS website (http://dias-dss.tkl.iis.u-tokyo.ac.jp/ddc/viewer?ds=d4PDF_GCM&lang=en).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youichi Kamae.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamae, Y., Shiogama, H., Imada, Y. et al. Forced response and internal variability of summer climate over western North America. Clim Dyn 49, 403–417 (2017). https://doi.org/10.1007/s00382-016-3350-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3350-x

Keywords

Navigation