Skip to main content

Advertisement

Log in

Resolution dependence of the simulated precipitation and diurnal cycle over the Maritime Continent

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Maritime Continent is a region of intense rainfall characterised by a strong diurnal cycle. This study investigates the sensitivity of rainfall characteristics to resolution in a coupled regional climate model configuration, in particular focusing on processes that modulate the diurnal cycle. Model biases are resolution dependent. Increasing resolution from 3/4° to 1/4° improves the mean state sea surface temperature and precipitation biases. However, at higher resolutions (1/12°) rainfall becomes too strong in most areas. Daily maximum rainfall is simulated about 2–4 h earlier than in observations over both the land and the ocean, with only small improvements over high topography at higher resolution. We develop a technique to examine cross-coastal processes associated with the rainfall diurnal cycle along all coastlines. This is used to investigate the sensitivity of the diurnal cycle to resolution and to the direction of the prevailing wind. During offshore prevailing winds, most land rainfall is confined near the coastline and associated with a shallow land-sea breeze circulation at all resolution (though rainfall partly develops directly inland at 1/12°). During onshore prevailing winds, rainfall propagates from the coastline to the island interior at 1/4° and 1/12°, whereas it appears directly over the island interior at 3/4°, and this is associated with a deep convective cell across the coastline for all resolutions. Oceanic rainfall propagates far offshore during offshore prevailing winds at all resolutions, whereas it tends to remain confined near the coastline under onshore prevailing winds condition, particularly at higher resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Aldrian E, Dwi Susanto R (2003) Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int J Climatol 23:1435–1452

    Article  Google Scholar 

  • Aldrian E, Sein D, Jacob D, Gates LD, Podzun R (2005) Modelling Indonesian rainfall with a coupled regional model. Clim Dyn 25:1–17

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division

  • Arakawa O, Kitoh A (2005) Rainfall diurnal variation over the Indonesian maritime continent simulated by 20 km-mesh GCM. Sola 1:109–112

    Article  Google Scholar 

  • Arritt RW (1993) Effects of the large-scale flow on characteristic features of the sea breeze. J Appl Meteorol 32:116–125

    Article  Google Scholar 

  • Banta RM, Olivier LD, Levinson DH (1993) Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar. J Atmospheric Sci 50:3959–3982

    Article  Google Scholar 

  • Barnier B, Dussin R, Molines JM (2011) Scientific Validation Report (ScVR) for V1 Reprocessed Analysis and Reanalysis. WP 04—GLO—CNRS_LEGI Grenoble

  • Bechtold P, Pinty J-P, Mascart F (1991) A numerical investigation of the influence of large-scale winds on sea-breeze-and inland-breeze-type circulations. J Appl Meteorol 30:1268–1279

    Article  Google Scholar 

  • Bellenger H, Takayabu YN, Ushiyama T, Yoneyama K (2010) Role of diurnal warm layers in the diurnal cycle of convection over the tropical Indian Ocean during MISMO. Mon Weather Rev 138:2426–2433

    Article  Google Scholar 

  • Bergemann M, Jakob C, Lane TP (2015) Global detection and analysis of coastline associated rainfall using an objective pattern recognition technique. J Clim 28:7225–7236. doi:10.1175/JCLI-D-15-0098.1

    Article  Google Scholar 

  • Bernie DJ, Guilyardi É, Madec G, Slingo JM, Woolnough SJ (2007) Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: a diurnally forced OGCM. Clim Dyn 29:575–590

    Article  Google Scholar 

  • Bhatt BC, Sobolowski S, Higuchi A (2016) Simulation of diurnal rainfall variability over the Maritime Continent with a high-resolution regional climate model. 気象集誌 第 2 輯 94:89–103

    Google Scholar 

  • Birch CE, Webster S, Peatman SC, Parker DJ, Matthews AJ, Li Y, Hassim MEE (2016) Scale interactions between the MJO and the western Maritime Continent. J Clim. doi:10.1175/JCLI-D-15-0557.1

    Google Scholar 

  • Boyle J, Klein SA (2010) Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J. Geophys Res Atmos 1984–2012:115

    Google Scholar 

  • Chang CP, Wang Z, McBride J, Liu C-H (2005) Annual cycle of Southeast Asia-Maritime Continent rainfall and the asymmetric monsoon transition. J Clim 18:287–301

    Article  Google Scholar 

  • Chen SS, Houze RA (1997) Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Q J R Meteorol Soc 123:357–388

    Article  Google Scholar 

  • Chou MD, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Technical Report Series on Global Modeling and Data Assimilation, vol 3. pp 102. Goddard Space Flight Center, Greenbelt, MD, USA

  • Crétat J, Masson S, Berthet S et al (2016) Control of shortwave radiation parameterization on tropical climate SST-forced simulation. Clim Dyn. doi:10.1007/s00382-015-2934-1

    Google Scholar 

  • Dayem KE, Noone DC, Molnar P (2007) Tropical western Pacific warm pool and maritime continent precipitation rates and their contrasting relationships with the Walker Circulation. J Geophys Res Atmos 112:D6

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Estoque MA (1962) The sea breeze as a function of the prevailing synoptic situation. J Atmos Sci 19:244–250

    Article  Google Scholar 

  • Fang Y, Zhang Y, Tang J, Ren X (2010) A regional air-sea coupled model and its application over East Asia in the summer of 2000. Adv Atmos Sci 27:583–593

    Article  Google Scholar 

  • Gianotti RL, Zhang D, Eltahir EA (2012) Assessment of the regional climate model version 3 over the maritime continent using different cumulus parameterization and land surface schemes. J Clim 25:638–656

    Article  Google Scholar 

  • Grell GA, Dévényi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:38-1–38-4  

    Article  Google Scholar 

  • Hallberg R (2013) Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Model 72:92–103

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  • Ichikawa H, Yasunari T (2006) Time-space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. J Clim 19:1238–1260

    Article  Google Scholar 

  • Ichikawa H, Yasunari T (2008) Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during austral summer. J Clim 21:2852–2868

    Article  Google Scholar 

  • Johnson SJ, Levine RC, Turner AG et al (2016) The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35 AGCM. Clim Dyn 46:807. doi:10.1007/s00382-015-2614-1

    Article  Google Scholar 

  • Jourdain NC, Marchesiello P, Menkes CE et al (2011) Mesoscale simulation of tropical cyclones in the South Pacific: climatology and interannual variability. J Clim 24:3–25

    Article  Google Scholar 

  • Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503

    Article  Google Scholar 

  • Koch-Larrouy A, Lengaigne M, Terray P et al (2010) Tidal mixing in the Indonesian Seas and its effect on the tropical climate system. Clim Dyn 34:891–904

    Article  Google Scholar 

  • Levitus S, Conkright ME, Boyer TP, O'Brien T, Antonov JI, Stephens C, Stathoplos L, Johnson D, Gelfeld R (1998) World Ocean Database 1998, Volume 1: Introduction. NOAA Atlas NESDIS 18. US Government Printing Office, Washington, DC, p 346

  • Love BS, Matthews AJ, Lister G (2011) The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. Q J R Meteorol Soc 137:934–947

    Article  Google Scholar 

  • Lungu, T., and Coauthors (2006) QuikSCAT Science Data Product User’s Manual Version 3.0. -18053-Rev Pasadena CA Jet Propuls. Lab. Calif. Inst. Technol

  • Madec, G (2008) NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619

  • Martin GM, Ringer MA, Pope VD et al (2006) The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: model description and global climatology. J Clim 19:1274–1301

    Article  Google Scholar 

  • Miller STK, Keim BD, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys 41(3):1011. doi:10.1029/2003RG000124

    Article  Google Scholar 

  • Mori S, Jun-Ichi H, Tauhid YI et al (2004) Diurnal land-sea rainfall peak migration over Sumatera Island, Indonesian maritime continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon Weather Rev 132:2021–2039

    Article  Google Scholar 

  • Moron V, Robertson AW, Qian J-H (2010) Local versus regional-scale characteristics of monsoon onset and post-onset rainfall over Indonesia. Clim Dyn 34:281–299

    Article  Google Scholar 

  • Neale R, Slingo J (2003) The maritime continent and its role in the global climate: a GCM study. J Clim 16:834–848

    Article  Google Scholar 

  • Nesbitt SW, Zipser EJ (2003) The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J Clim 16:1456–1475

    Article  Google Scholar 

  • Oerder V, Colas F, Echevin V et al (2016) Mesoscale SST–wind stress coupling in the Peru-Chile current system: which mechanisms drive its seasonal variability? Clim Dyn. doi:10.1007/s00382-015-2965-7

    Google Scholar 

  • Oh J-H, Kim K-Y, Lim G-H (2012) Impact of MJO on the diurnal cycle of rainfall over the western Maritime Continent in the austral summer. Clim Dyn 38:1167–1180

    Article  Google Scholar 

  • Peatman SC, Matthews AJ, Stevens DP (2013) Propagation of the Madden–Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Q J R Meteorol Soc 140:814–825

    Article  Google Scholar 

  • Qian J-H (2008) Why precipitation is mostly concentrated over islands in the Maritime Continent. J Atmos Sci 65:1428–1441

    Article  Google Scholar 

  • Qian J-H, Robertson AW, Moron V (2013) Diurnal cycle in different weather regimes and rainfall variability over Borneo associated with ENSO. J Clim 26:1772–1790

    Article  Google Scholar 

  • Ratnam JV, Giorgi F, Kaginalkar A, Cozzini S (2009) Simulation of the Indian monsoon using the RegCM3–ROMS regional coupled model. Clim Dyn 33:119–139

    Article  Google Scholar 

  • Rauniyar SP, Walsh KJ (2011) Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: influence of the MJO. J Clim 24:325–348

    Article  Google Scholar 

  • Rauniyar SP, Walsh KJ (2013) Influence of ENSO on the diurnal cycle of rainfall over the Maritime Continent and Australia. J Clim 26:1304–1321

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C et al (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Samson G, Masson S, Lengaigne M et al (2014) The NOW regional coupled model: application to the tropical Indian Ocean climate and tropical cyclone activity. J Adv Model Earth Syst 6:700–722

    Article  Google Scholar 

  • Sato T, Miura H, Satoh M et al (2009) Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J Clim 22:4809–4826

    Article  Google Scholar 

  • Schiemann R, Demory M-E, Mizielinski MS et al (2014) The sensitivity of the tropical circulation and Maritime Continent precipitation to climate model resolution. Clim Dyn 42:2455–2468

    Article  Google Scholar 

  • Shin HH, Hong S-Y, Dudhia J, Kim Y-J (2010) Orography-induced gravity wave drag parameterization in the global WRF: implementation and sensitivity to shortwave radiation schemes. Adv Meteorol. doi:10.1155/2010/959014

    Google Scholar 

  • Skamarock, WC, Klemp JB, Dudhia J, Gill DO, Barker D, Duda MG, Huang X-Y, Powers JG, Wang W (2008) A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475 + STR. doi:10.5065/D68S4MVH

  • Slingo J, Inness P, Neale R, Woolnough S, Yang G-Y (2003) Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors. Ann Geophys. doi:10.4401/ag-3383

    Google Scholar 

  • Sobel AH, Burleyson CD, Yuter SE (2011) Rain on small tropical islands. J Geophys Res Atmos 1984–2012:116

    Google Scholar 

  • Sui CH, Lau KM, Takayabu YN, Short DA (1997) Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J Atmos Sci 54:639–655

    Article  Google Scholar 

  • Terray P, Kamala K, Masson S et al (2012) The role of the intra-daily SST variability in the Indian monsoon variability and monsoon-ENSO–IOD relationships in a global coupled model. Clim Dyn 39:729–754

    Article  Google Scholar 

  • The Drakkar group (2007) Eddy-permitting ocean circulation hindcasts of past decades. Clivar Exch 42:8–10

    Google Scholar 

  • Valcke S (2013) The OASIS3 coupler: a European climate modelling community software. Geosci Model Dev 6:373–388

    Article  Google Scholar 

  • Wang Y, Zhou L, Hamilton K (2007) Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon Weather Rev 135:567–585

    Article  Google Scholar 

  • Wehner MF, Reed KA, Li F et al (2014) The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5. 1. J Adv Model Earth Syst 6:980–997

    Article  Google Scholar 

  • Wei J, Malanotte-Rizzoli P, Eltahir EA et al (2014) Coupling of a regional atmospheric model (RegCM3) and a regional oceanic model (FVCOM) over the maritime continent. Clim Dyn 43:1575–1594

    Article  Google Scholar 

  • Wu C-H, Hsu H-H (2009) Topographic influence on the MJO in the Maritime Continent. J Clim 22:5433–5448

    Article  Google Scholar 

  • Xue P, Eltahir EA, Malanotte-Rizzoli P, Wei J (2014) Local feedback mechanisms of the shallow water region around the Maritime Continent. J Geophys Res Oceans 119:6933–6951

    Article  Google Scholar 

  • Yang G-Y, Slingo J (2001) The diurnal cycle in the tropics. Mon Weather Rev 129:784–801

    Article  Google Scholar 

  • Zhou L, Wang Y (2006) Tropical Rainfall Measuring Mission observation and regional model study of precipitation diurnal cycle in the New Guinean region. J Geophys Res Atmos. doi:10.1029/2006JD007243

    Google Scholar 

  • Zou L, Zhou T (2011) Sensitivity of a regional ocean-atmosphere coupled model to convection parameterization over western North Pacific. J Geophys Res Atmos. doi:10.1029/2011JD015844

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council Centre of Excellence for Climate System Science (CE110001028) and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia. The collaboration with S.M. was supported by the Visiting Researcher Fellowship of the UNSW faculty of science and by the project PULSATION ANR-11-MONU-0010 of the French National Research Agency (ANR). WRF was provided by the University Corporation for Atmospheric Research (http://www2.mmm.ucar.edu/wrf/users/download/get_source.htm). All the simulations were performed on the Australian National Computational Infrastructure (NCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jourdain, N.C., Taschetto, A.S. et al. Resolution dependence of the simulated precipitation and diurnal cycle over the Maritime Continent. Clim Dyn 48, 4009–4028 (2017). https://doi.org/10.1007/s00382-016-3317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3317-y

Keywords

Navigation