Skip to main content
Log in

Roles of land surface albedo and horizontal resolution on the Indian summer monsoon biases in a coupled ocean–atmosphere tropical-channel model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Indian summer monsoon (ISM) simulated over the 1989–2009 period with a new 0.75° ocean–atmosphere coupled tropical-channel model extending from 45°S to 45°N is presented. The model biases are comparable to those commonly found in coupled global climate models (CGCMs): the Findlater jet is too weak, precipitations are underestimated over India while they are overestimated over the southwestern Indian Ocean, South-East Asia and the Maritime Continent. The ISM onset is delayed by several weeks, an error which is also very common in current CGCMs. We show that land surface temperature errors are a major source of the ISM low-level circulation and rainfall biases in our model: a cold bias over the Middle-East (ME) region weakens the Findlater jet while a warm bias over India strengthens the monsoon circulation over the southern Bay of Bengal. A surface radiative heat budget analysis reveals that the cold bias is due to an overestimated albedo in this desertic ME region. Two new simulations using a satellite-observed land albedo show a significant and robust improvement in terms of ISM circulation and precipitation. Furthermore, the ISM onset is shifted back by 1 month and becomes in phase with observations. Finally, a supplementary set of simulations at 0.25°-resolution confirms the robustness of our results and shows an additional reduction of the warm and dry bias over India. These findings highlight the strong sensitivity of the simulated ISM rainfall and its onset timing to the surface land heating pattern and amplitude, especially in the ME region. It also illustrates the key-role of land surface processes and horizontal resolution for improving the ISM representation, and more generally the monsoons, in current CGCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www2.mmm.ucar.edu/wrf/users/FAQ_files/FAQ_wps_input_data.html.

References

  • Abhik S, Mukhopadhyay P, Goswami BN (2014) Evaluation of mean and intraseasonal variability of Indian summer monsoon simulation in ECHAM5: identification of possible source of bias. Clim Dyn 43:389–406. doi:10.1007/s00382-013-1824-7

    Article  Google Scholar 

  • Annamalai H, Taguchi B, Sperber KR et al (2015) Persistence of systematic errors in the Asian-Australian monsoon precipitation basic states in climate models: a way forward. CLIVAR Exch No 66 19(1)

  • Axell LB (2002) Wind-driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea. J Geophys Res 107:3204. doi:10.1029/2001JC000922

    Article  Google Scholar 

  • Barnier B, LeSommer J, Molines J-M et al (2007) Eddy-permitting ocean circulation hindcasts of the past decades. CLIVAR Exch No 42 12(3):8–10

  • Betts AK, Miller MJ (1986) A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q J R Meteorol Soc 112:693–709. doi:10.1002/qj.49711247308

    Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the Tropical Atlantic Ocean simulated by a General Circulation Model with two different mixed-layer physics. J Phys Oceanogr 23:1363–1388. doi:10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2

    Article  Google Scholar 

  • Bollasina MA, Ming Y (2013) The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon. Clim Dyn 40:823–838. doi:10.1007/s00382-012-1347-7

    Article  Google Scholar 

  • Bollasina M, Nigam S (2011) The summertime “heat” low over Pakistan/northwestern India: evolution and origin. Clim Dyn 37:957–970. doi:10.1007/s00382-010-0879-y

    Article  Google Scholar 

  • Bonan GB, Oleson KW, Vertenstein M et al (2002) The land surface climatology of the community land model coupled to the NCAR community climate model. J Clim 15:3123–3149. doi:10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2

    Article  Google Scholar 

  • Boos WR (2015) A review of recent progress on Tibet’s role in the South Asian monsoon

  • Boos WR, Hurley JV (2013) Thermodynamic bias in the multimodel mean boreal summer monsoon. J Clim 26:2279–2287. doi:10.1175/JCLI-D-12-00493.1

    Article  Google Scholar 

  • Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463:218–222. doi:10.1038/nature08707

    Article  Google Scholar 

  • Boos WR, Kuang Z (2013) Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Sci Rep 3:1192. doi:10.1038/srep01192

    Article  Google Scholar 

  • Brovkin V, Boysen L, Raddatz T et al (2013) Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations. J Adv Model Earth Syst 5:48–57. doi:10.1029/2012MS000169

    Article  Google Scholar 

  • Burchard H (2002) Energy-conserving discretisation of turbulent shear and buoyancy production. Ocean Model 4:347–361. doi:10.1016/S1463-5003(02)00009-4

    Article  Google Scholar 

  • Chakraborty A (2002) Role of Asian and African orography in Indian summer monsoon. Geophys Res Lett 29:1989. doi:10.1029/2002GL015522

    Article  Google Scholar 

  • Chakraborty A, Nanjundiah RS, Srinivasan J (2006) Theoretical aspects of the onset of Indian summer monsoon from perturbed orography simulations in a GCM. Ann Geophys 24:2075–2089. doi:10.5194/angeo-24-2075-2006

    Article  Google Scholar 

  • Charney J, Quirk WJ, Chow S, Kornfield J (1977) A comparative study of the effects of albedo change on drought in semi-arid regions. J Atmos Sci 34:1366–1385. doi:10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part II: preliminary model validation. Mon Weather Rev 129:587–604. doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2

    Article  Google Scholar 

  • Cherchi A, Navarra A (2006) Sensitivity of the Asian summer monsoon to the horizontal resolution: differences between AMIP-type and coupled model experiments. Clim Dyn 28:273–290. doi:10.1007/s00382-006-0183-z

    Article  Google Scholar 

  • Chou C (2003) Land–sea heating contrast in an idealized Asian summer monsoon. Clim Dyn 21:11–25. doi:10.1007/s00382-003-0315-7

    Article  Google Scholar 

  • Chou M-D, Suarez MJ (1999) A solar radiation parameterization for atmospheric studies. NASA Tech Rep 15:TM–1999–104606

  • Christensen JH, Hewitson B (2007) Regional climate projections. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, p 940

  • Crétat J, Masson S, Berthet S et al (2016) Control of shortwave radiation parameterization on tropical climate SST-forced simulation. Clim Dyn 1–20. doi:10.1007/s00382-015-2934-1

  • Csiszar I, Gutman G (1999) Mapping global land surface albedo from NOAA AVHRR. J Geophys Res 104:6215. doi:10.1029/1998JD200090

    Article  Google Scholar 

  • Dai A, Li H, Sun Y et al (2013) The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons. J Geophys Res Atmos 118:7024–7045. doi:10.1002/jgrd.50565

    Article  Google Scholar 

  • Dash SK, Pattnayak KC, Panda SK et al (2014) Impact of domain size on the simulation of Indian summer monsoon in RegCM4 using mixed convection scheme and driven by HadGEM2. Clim Dyn 44:961–975. doi:10.1007/s00382-014-2420-1

    Article  Google Scholar 

  • De Boyer Montégut C, Vialard J, Shenoi SSC et al (2007) Simulated seasonal and interannual variability of the mixed layer heat budget in the Northern Indian Ocean. J Clim 20:3249–3268. doi:10.1175/JCLI4148.1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Evan S, Alexander MJ, Dudhia J (2012) Model study of intermediate-scale tropical inertia–gravity waves and comparison to TWP-ICE campaign observations. J Atmos Sci 69:591–610

    Article  Google Scholar 

  • Flaounas E, Janicot S, Bastin S, Roca R (2012) The West African monsoon onset in 2006: sensitivity to surface albedo, orography, SST and synoptic scale dry-air intrusions using WRF. Clim Dyn 38:685–708. doi:10.1007/s00382-011-1255-2

    Article  Google Scholar 

  • Flohn H (1968) Contributions to a meteorology of the Tibetan Highlands. Department of Atmospheric Science, Colorado State University Fort Collins, Colorado

    Google Scholar 

  • Friedl M, McIver D, Hodges JC et al (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302. doi:10.1016/S0034-4257(02)00078-0

    Article  Google Scholar 

  • Gadgil S, Joseph PV, Joshi NV (1984) Ocean–atmosphere coupling over monsoon regions. Nature 312:141–143. doi:10.1038/312141a0

    Article  Google Scholar 

  • Ganai M, Mukhopadhyay P, Krishna RPM, Mahakur M (2015) The impact of revised simplified Arakawa-Schubert convection parameterization scheme in CFSv2 on the simulation of the Indian summer monsoon. Clim Dyn 45:881–902. doi:10.1007/s00382-014-2320-4

    Article  Google Scholar 

  • Gent PR, Mcwilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155. doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2

    Article  Google Scholar 

  • Goswami BB, Deshpande M, Mukhopadhyay P et al (2014) Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias. Clim Dyn 43:2725–2745. doi:10.1007/s00382-014-2089-5

    Article  Google Scholar 

  • Gutman G, Ignatov A (1998) The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int J Remote Sens 19:1533–1543

    Article  Google Scholar 

  • Hagos S, Leung R, Rauscher SA, Ringler T (2013) Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon Weather Rev 141:3022–3036. doi:10.1175/MWR-D-12-00338.1

    Article  Google Scholar 

  • He H, Sui C-H, Jian M et al (2003) The evolution of tropospheric temperature field and its relationship with the onset of Asian summer monsoon. J Meteorol Soc Japan 81:1201–1223. doi:10.2151/jmsj.81.1201

    Article  Google Scholar 

  • Hong S, Lim J (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42:129–151

    Google Scholar 

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. doi:10.1175/MWR3199.1

    Article  Google Scholar 

  • Hou YT, Moorthi S, Campana KA (2002) Parameterization of solar radiation transfer in the NCEP models. NCEP Off Note 441:1–46

    Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Nelkin EJ (2010) The TRMM multi-satellite precipitation analysis (TMPA). In: Gebremichael M, Hossain F (eds) Satellite rainfall applications for surface hydrology. Springer, Netherlands, Dordrecht, pp 3–22. doi:10.1007/978-90-481-2915-7_1

  • Janjić ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Jin Y, Schaaf CB, Woodcock CE, Gao F, Li X, Strahler AH, Lucht W, Liang S (2003) Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals, 2. Validation. J Geophys Res 108(D5):4159. doi:10.1029/2002JD002804

    Article  Google Scholar 

  • Joseph S, Sahai AK, Goswami BN et al (2012) Possible role of warm SST bias in the simulation of boreal summer monsoon in SINTEX-F2 coupled model. Clim Dyn 38:1561–1576. doi:10.1007/s00382-011-1264-1

    Article  Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

    Article  Google Scholar 

  • Kato S, Loeb NG, Rose FG et al (2013) Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J Clim 26:2719–2740. doi:10.1175/JCLI-D-12-00436.1

    Article  Google Scholar 

  • Kelly P, Mapes B (2010) Land surface heating and the North American Monsoon anticyclone: model evaluation from diurnal to seasonal. J Clim 23:4096–4106. doi:10.1175/2010JCLI3332.1

    Article  Google Scholar 

  • Kelly P, Mapes B (2013) Asian monsoon forcing of subtropical easterlies in the community atmosphere model: summer climate implications for the Western Atlantic. J Clim 26:2741–2755. doi:10.1175/JCLI-D-12-00339.1

    Article  Google Scholar 

  • Krishnamurthy V, Ajayamohan RS (2010) Composite structure of monsoon low pressure systems and its relation to Indian rainfall. J Clim 23:4285–4305. doi:10.1175/2010JCLI2953.1

    Article  Google Scholar 

  • Kumar P, Podzun R, Hagemann S, Jacob D (2014) Impact of modified soil thermal characteristic on the simulated monsoon climate over south Asia. J Earth Syst Sci 123:151–160. doi:10.1007/s12040-013-0381-0

    Article  Google Scholar 

  • Leduc M, Laprise R (2009) Regional climate model sensitivity to domain size. Clim Dyn 32:833–854. doi:10.1007/s00382-008-0400-z

    Article  Google Scholar 

  • Levine RC, Turner AG (2012) Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Clim Dyn 38:2167–2190. doi:10.1007/s00382-011-1096-z

    Article  Google Scholar 

  • Lévy M, Estublier A, Madec G (2001) Choice of an advection scheme for biogeochemical models. Geophys Res Lett 28:3725–3728. doi:10.1029/2001GL012947

    Article  Google Scholar 

  • Li C, Yanai M (1996) The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J Clim 9:358–375

    Article  Google Scholar 

  • Li G, Xie S-P, Du Y (2015) Monsoon-induced biases of climate models over the tropical Indian Ocean. J Clim 28:3058–3072. doi:10.1175/JCLI-D-14-00740.1

    Article  Google Scholar 

  • Lucas-Picher P, Christensen JH, Saeed F et al (2011) Can regional climate models represent the Indian monsoon? J Hydrometeorol 12:849–868. doi:10.1175/2011JHM1327.1

    Article  Google Scholar 

  • Ma D, Boos W, Kuang Z (2014) Effects of orography and surface heat fluxes on the South Asian summer monsoon. J Clim 27:6647–6659. doi:10.1175/JCLI-D-14-00138.1

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Inst. Pierre-Simon Laplace, Paris

    Google Scholar 

  • Masson S, Terray P, Madec G et al (2012) Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim Dyn 39:681–707. doi:10.1007/s00382-011-1247-2

    Article  Google Scholar 

  • Meehl GA (1994) Influence of the land surface in the Asian Summer monsoon: external conditions versus internal feedbacks. J Clim 7:1033–1049

    Article  Google Scholar 

  • Mellor G, Blumberg A (2004) Wave breaking and ocean surface layer thermal response. J Phys Oceanogr 34:693–698. doi:10.1175/2517.1

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD et al (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663. doi:10.1029/97JD00237

    Article  Google Scholar 

  • Molnar P, Boos WR, Battisti DS (2010) Orographic controls on climate and Paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu Rev Earth Planet Sci 38:77–102. doi:10.1146/annurev-earth-040809-152456

    Article  Google Scholar 

  • Mukhopadhyay P, Taraphdar S, Goswami BN, Krishnakumar K (2010) Indian summer monsoon precipitation climatology in a high-resolution regional climate model: impacts of convective parameterization on systematic biases. Weather Forecast 25:369–387. doi:10.1175/2009WAF2222320.1

    Article  Google Scholar 

  • Pattnaik S, Abhilash S, De S et al (2013) Influence of convective parameterization on the systematic errors of Climate Forecast System (CFS) model over the Indian monsoon region from an extended range forecast perspective. Clim Dyn 41:341–365. doi:10.1007/s00382-013-1662-7

    Article  Google Scholar 

  • Prodhomme C, Terray P, Masson S et al (2014) Impacts of Indian Ocean SST biases on the Indian monsoon: as simulated in a global coupled model. Clim Dyn 42:271–290. doi:10.1007/s00382-013-1671-6

    Article  Google Scholar 

  • Prodhomme C, Terray P, Masson S et al (2015) Oceanic factors controlling the Indian summer monsoon onset in a coupled model. Clim Dyn 44:977–1002. doi:10.1007/s00382-014-2200-y

    Article  Google Scholar 

  • Rajagopalan B, Molnar P (2013) Signatures of Tibetan Plateau heating on Indian summer monsoon rainfall variability. J Geophys Res Atmos 118:1170–1178. doi:10.1002/jgrd.50124

    Article  Google Scholar 

  • Ray P, Zhang C, Moncrieff MW, Dudhia J, Caron JM, Leung LR, Bruyère C (2011) Role of the atmospheric mean state on the initiation of the Madden-Julian oscillation in a tropical channel model. Clim Dyn 36:161–184

    Article  Google Scholar 

  • Rechid D, Raddatz TJ, Jacob D (2009) Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling. Theor Appl Climatol 95:245–255. doi:10.1007/s00704-008-0003-y

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C et al (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496. doi:10.1175/2007JCLI1824.1

    Article  Google Scholar 

  • Rodwell MJ, Hoskins BJ (1996) Monsoons and the dynamics of deserts. Q J R Meteorol Soc 122:1385–1404. doi:10.1002/qj.49712253408

    Article  Google Scholar 

  • Sabeerali CT, Dandi AR, Dhakate A et al (2013) Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J Geophys Res Atmos 118:4401–4420. doi:10.1002/jgrd.50403

    Article  Google Scholar 

  • Sabeerali CT, Rao SA, Dhakate A et al (2015) Why ensemble mean projection of south Asian monsoon rainfall by CMIP5 models is not reliable? Clim Dyn 45:161–174. doi:10.1007/s00382-014-2269-3

    Article  Google Scholar 

  • Sabin TP, Krishnan R, Ghattas J et al (2013) High resolution simulation of the South Asian monsoon using a variable resolution global climate model. Clim Dyn 41:173–194. doi:10.1007/s00382-012-1658-8

    Article  Google Scholar 

  • Saeed F, Hagemann S, Jacob D (2009) Impact of irrigation on the South Asian summer monsoon. Geophys Res Lett 36:L20711. doi:10.1029/2009GL040625

    Article  Google Scholar 

  • Saha SK, Pokhrel S, Chaudhari HS et al (2014) Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. Int J Climatol 34:1628–1641. doi:10.1002/joc.3791

    Article  Google Scholar 

  • Samala BK, Banerjee CN et al (2013) Study of the Indian summer monsoon using WRF-ROMS regional coupled model simulations. Atmos Sci Lett 14:20–27. doi:10.1002/asl2.409

    Article  Google Scholar 

  • Samson G, Masson S, Lengaigne M et al (2014) The NOW regional coupled model: application to the tropical Indian Ocean climate and tropical cyclone activity. J Adv Model Earth Syst 6:700–722. doi:10.1002/2014MS000324

    Article  Google Scholar 

  • Schaaf CB, Liu J, Gao F, Strahler AH (2011) Land remote sensing and global environmental change. Remote Sens Glob Environ Chang 11:549–561. doi:10.1007/978-1-4419-6749-7

    Article  Google Scholar 

  • Seo H, Xie S-P, Murtugudde R et al (2009) Seasonal effects of Indian Ocean freshwater forcing in a regional coupled model. J Clim 22:6577–6596. doi:10.1175/2009JCLI2990.1

    Article  Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485. doi:10.1016/j.jcp.2007.01.037

    Article  Google Scholar 

  • Sooraj KP, Terray P, Mujumdar M (2015) Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim Dyn 45:233–252. doi:10.1007/s00382-014-2257-7

    Article  Google Scholar 

  • Sperber KR, Annamalai H, Kang I-S et al (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744. doi:10.1007/s00382-012-1607-6

    Article  Google Scholar 

  • Srinivas CV, Hariprasad D, Bhaskar Rao DV et al (2013) Simulation of the Indian summer monsoon regional climate using advanced research WRF model. Int J Climatol 33:1195–1210. doi:10.1002/joc.3505

    Article  Google Scholar 

  • Terray P, Kamala K, Masson S et al (2012) The role of the intra-daily SST variability in the Indian monsoon variability and monsoon–ENSO–IOD relationships in a global coupled model. Clim Dyn 39:729–754. doi:10.1007/s00382-011-1240-9

    Article  Google Scholar 

  • Treguier AM, Held IM, Larichev VD (1997) Parameterization of quasigeostrophic eddies in primitive equation Ocean Models. J Phys Oceanogr 27:567–580. doi:10.1175/1520-0485(1997)027<0567:POQEIP>2.0.CO;2

    Article  Google Scholar 

  • Ulate M, Zhang C, Dudhia J (2015) Role of water vapor and convection-circulation decoupling in MJO simulations by a tropical channel model. J Adv Model Earth Syst. doi:10.1002/2014MS000393

    Google Scholar 

  • Valcke S (2013) The OASIS3 coupler: a European climate modelling community software. Geosci Model Dev Discuss 5:2139–2178. doi:10.5194/gmd-6-373-2013

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Salas y Mélia D et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. doi:10.1007/s00382-011-1259-y

    Article  Google Scholar 

  • Wang B (2006) The Asian monsoon. Springer/Praxis Publishing, New York

    Google Scholar 

  • Wang K, Liu J, Zhou X, Sparrow M, Ma M, Sun Z, Jiang W (2004) Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau. J Geophys Res 109:D05107. doi:10.1029/2003JD004229

    Google Scholar 

  • Wang B, Ding Q, Fu X et al (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:2–5. doi:10.1029/2005GL022734

    Article  Google Scholar 

  • Wang Z, Zeng X, Barlage M (2007) Moderate resolution imaging spectroradiometer bidirectional reflectance distribution function–based albedo parameterization for weather and climate models. J Geophys Res 112:D02103. doi:10.1029/2005JD006736

    Google Scholar 

  • Wang B, Xiang B, Li J et al (2015) Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nat Commun 6:7154. doi:10.1038/ncomms8154

    Article  Google Scholar 

  • Wu YH, Raman S, Mohanty UC, Madala RV (2002) Sensitivity of monsoon circulation and precipitation over India to model horizontal resolution and orographic effects. Meteorol Appl 9:345–356. doi:10.1017/S1350482702003080

    Article  Google Scholar 

  • Wu GX, Liu Y, Zhu X et al (2009) Multi-scale forcing and the formation of subtropical desert and monsoon. Ann Geophys 27:3631–3644. doi:10.5194/angeo-27-3631-2009

    Article  Google Scholar 

  • Wu G, Liu Y, He B et al (2012) Thermal controls on the Asian summer monsoon. Sci Rep 2:1–7. doi:10.1038/srep00404

    Google Scholar 

  • Xavier PK, Marzin C, Goswami BN (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship. Q J R Meteorol Soc 133:749–764. doi:10.1002/qj.45

    Article  Google Scholar 

  • Yanai M, Li C, Song Z (1992) Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian Summer monsoon. J Meteorol Soc Jpn 70:189–221

    Google Scholar 

  • Zhaohui L, Qingcun Z (1997) Simulation of East Asian summer monsoon by using an improved AGCM. Adv Atmos Sci 14:513–526. doi:10.1007/s00376-997-0069-y

    Article  Google Scholar 

Download references

Acknowledgments

This work was founded by the PULSATION ANR-11-MONU-0010 project of the French National Research Agency (ANR) and the European Commission’s 7th Framework Program, under Grant Agreement number 282672, EMBRACE project. Partial support (P. Terray) given by the Earth System Science Organization, Ministry of Earth Sciences, Government of India (Project no MM/SERP/CNRS/2013/INT-10/002) is also acknowledged. Simulations were performed on the Curie supercomputer, owned by GENCI and operated into the TGCC by CEA. We acknowledge PRACE for awarding us access to the Curie supercomputer thought its 3rd, 5th and 9th calls. WRF-ARW was provided by the University Corporation for Atmospheric Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Samson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samson, G., Masson, S., Durand, F. et al. Roles of land surface albedo and horizontal resolution on the Indian summer monsoon biases in a coupled ocean–atmosphere tropical-channel model. Clim Dyn 48, 1571–1594 (2017). https://doi.org/10.1007/s00382-016-3161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3161-0

Keywords

Navigation