Skip to main content

Advertisement

Log in

Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A high-resolution global atmospheric model is used to investigate the influence of the representation of small-scale North Atlantic sea surface temperature (SST) patterns on the atmosphere during boreal winter. Two ensembles of forced simulations are performed and compared. In the first ensemble (HRES), the full spatial resolution of the SST is maintained while small-scale features are smoothed out in the Gulf Stream region for the second ensemble (SMTH). The model shows a reasonable climatology in term of large-scale circulation and air–sea interaction coefficient when compared to reanalyses and satellite observations, respectively. The impact of small-scale SST patterns as depicted by differences between HRES and SMTH shows a strong meso-scale local mean response in terms of surface heat fluxes, convective precipitation, and to a lesser extent cloudiness. The main mechanism behind these statistical differences is that of a simple hydrostatic pressure adjustment related to increased SST and marine atmospheric boundary layer temperature gradient along the North Atlantic SST front. The model response to small-scale SST patterns also includes remote large-scale effects: upper tropospheric winds show a decrease downstream of the eddy-driven jet maxima over the central North Atlantic, while the subtropical jet exhibits a significant northward shift in particular over the eastern Mediterranean region. Significant changes are simulated in regard to the North Atlantic storm track, such as a southward shift of the storm density off the coast of North America towards the maximum SST gradient. A storm density decrease is also depicted over Greenland and the Nordic seas while a significant increase is seen over the northern part of the Mediterranean basin. Changes in Rossby wave breaking frequencies and weather regimes spatial patterns are shown to be associated to the jets and storm track changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ayrault F, Joly A (2000) The genesis of mid-latitude cyclones over the Atlantic ocean: a new climatological perspective. C R Acad Sci Paris Earth Planet Sci 330:173–178. doi:10.1016/S1251-8050(00)00121-X

    Article  Google Scholar 

  • Booth JF, Thompson L, Patoux J, Kelly KA (2012) Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon Weather Rev 140:1241–1256

    Article  Google Scholar 

  • Bougeault P (1985) A simple parameterization of the large-scale effects of cumulus convection. Mon Weather Rev 113(12):2108–2121. doi:10.1175/1520-0493(1985)113<2108:ASPOTL>2.0.CO;2

    Article  Google Scholar 

  • Brachet S, Codron F, Feliks Y, Ghil M, Le Treut H, Simonnet E (2012) Atmospheric circulations induced by a midlatitude SST front: a GCM study. J Clim 25(6):1847–1853

    Article  Google Scholar 

  • Brachet S, Codron F, Feliks Y, Ghil M, Le Treut H, Simonnet E (2012) Atmospheric circulations induced by a midlatitude SST front: a GCM study. J Clim 25(6):1847–1853

    Article  Google Scholar 

  • Brayshaw DJ, Hoskins B, Blackburn M (2008) The storm-track response to idealized SST perturbations in an aquaplanet GCM. J Atmos Sci 65(9):2842–2860

    Article  Google Scholar 

  • Bryan FO, Tomas R, Dennis JM, Chelton DB, Loeb NG, McClean JL (2010) Frontal scale air–sea interaction in high-resolution coupled climate models. J Clim 23:6277–6291. doi:10.1175/2010JCLI3665.1

    Article  Google Scholar 

  • Chelton DB, Xie S-P (2010) Coupled ocean–atmosphere interaction at oceanic mesoscales. Oceanography 23:52–69

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Dunbar RS, Lungu T, Weiss B, Stiles B, Huddleston J, Callahan PS, Shirtliffe G, Perry KL, Hsu C, Mears C, Wentz F, Smith D (2006) QuikSCAT science data product user manual, version 3.0, JPL Document D-18053—Rev A, Jet Propulsion Laboratory, Pasadena, CA

  • Feliks Y, Ghil M, Simonnet E (2004) Low-frequency variability in the midlatitude atmosphere induced by an oceanic thermal front. J Atmos Sci 61:961

    Article  Google Scholar 

  • Feliks Y, Ghil M, Simonnet E (2007) Low-frequency variability in the midlatitude baroclinic atmosphere induced by an oceanic thermal front. J Atmos Sci 64:97–116

    Article  Google Scholar 

  • Giordani H, Caniaux G (2001) Sensitivity of cyclogenesis to sea surface temperature in the northwestern Atlantic. Mon Weather Rev 129(6):1273–1295

    Article  Google Scholar 

  • Hannachi A, Barnes EA, Woollings T (2013) Behaviour of the winter North Atlantic eddy-driven jet stream in the CMIP3 integrations. Clim Dyn 41(3–4):995–1007

    Article  Google Scholar 

  • Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47:1854–1864

    Article  Google Scholar 

  • Kilpatrick T, Schneider N, Qiu B (2014) Boundary layer convergence induced by strong winds across a midlatitude SST front. J Clim 27(4):1698–1718. doi:10.1175/JCLI-D-13-00101.1

    Article  Google Scholar 

  • Kushnir Y, Robinson WA, Bladé I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15:2233–2256

    Article  Google Scholar 

  • Kuwano-Yoshida A, Minobe S, Xie S-P (2010) Precipitation response to the Gulf Stream in an atmospheric GCM. J Clim 23:3676–3698. doi:10.1175/2010jcli3261.1

    Article  Google Scholar 

  • Laîné A, Lapeyre G, Rivière G (2011) A quasi-geostrophic model for moist storm-tracks. J Atmos Sci 68:1306–1322

    Article  Google Scholar 

  • Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44(17):2418–2436

    Article  Google Scholar 

  • Liu J-W, Xie S-P, Norris JR, Zhang S-P (2014) Low-level cloud response to the Gulf Stream front in winter using Calipso. J Clim 27:4421–4432

    Article  Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound-Layer Meteorol 17:187–202

    Article  Google Scholar 

  • Maloney ED, Chelton DB (2006) An assessment of sea surface temperature influence on surface winds in numerical weather prediction and climate models. J Clim 19:2743–2762

    Article  Google Scholar 

  • Michel C, Rivière G (2011) The link between Rossby wave breakings and weather regime transitions. J Atmos Sci 68:1730–1748

    Article  Google Scholar 

  • Michel C, Rivière G, Terray L, Joly B (2012) The dynamical link between surface cyclones, upper-tropospheric Rossby wave breaking and the life cycle of the Scandinavian blocking. Geophys Res Lett 39:L10806. doi:10.1029/2012GL051682

    Article  Google Scholar 

  • Minobe S, Kuwano-Yoshida A, Komori N, Xie S-P, Small RJ (2008) Influence of the Gulf Stream on the troposphere. Nature 452:206–209

    Article  Google Scholar 

  • Nakamura H, Yamane S (2009) Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic Basin. J Clim 22:880–904. doi:10.1175/2008JCLI2297.1

    Article  Google Scholar 

  • Nakamura H, Sampe T, Goto A, Ohfuchi W, Xie S-P (2008) On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys Res Lett 35:L15709

    Article  Google Scholar 

  • NCL (2013) The NCAR command language (version 6.1.2) [software]. UCAR/NCAR/CISL/VETS, Boulder. doi:10.5065/D6WD3XH5

  • O’Neill LW, Esbensen SK, Thum N, Samelson RM, Chelton DB (2010) Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J Clim 23(3):559–581

    Article  Google Scholar 

  • Perlin N, De Szoeke SP, Chelton DB, Samelson RS, Skyllingstad ED, O’Neill LarryW (2014) Modeling the atmospheric boundary layer wind response to mesoscale sea surface temperature perturbations. Mon Weather Rev. doi:10.1175/MWR-D-13-00332.1

    Google Scholar 

  • Putrasahan DA, Miller AJ, Seo H (2013) Isolating mesoscale coupled ocean–atmosphere interactions in the Kuroshio Extension region. Dyn Atmos Oceans 63:60–78. doi:10.1016/j.dynatmoce.2013.04.001

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20(22):5473–5496

    Article  Google Scholar 

  • Rivière G (2009) Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes. J Atmos Sci 66:1569–1592

    Article  Google Scholar 

  • Shimada T, Minobe S (2011) Global analysis of the pressure adjustment mechanism over sea surface temperature fronts using AIRS/Aqua data. Geophys Res Lett 38:L06704. doi:10.1029/2010GLO46625

    Article  Google Scholar 

  • Small RJ, DeSzoeke SP, Xie SP, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Ocean 45:274–319. doi:10.1016/j.dynatmoce.2008.01.001

    Article  Google Scholar 

  • Small RJ, Tomas RA, Bryan FO (2014) Storm track response to ocean fronts in a global high-resolution climate model. Clim Dyn. doi:10.1007/s00382-013-1980-9

    Google Scholar 

  • Strong C, Magnusdottir G (2008) Tropospheric Rossby wave breaking and the NAO/NAM. J Atmos Sci 65:2861–2876. doi:10.1175/2008JAS2632.1

    Article  Google Scholar 

  • Taguchi B, Nakamura H, Nonaka M, Xie S-P (2009) Influences of the Kuroshio/Oyashio extensions on air–sea heat exchanges and storm track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J Clim 22:6536–6560

    Article  Google Scholar 

  • Takatama K, Minobe S, Inatsu M, Small RJ (2012) Diagnostics for near-surface wind convergence/divergence response to the Gulf Stream in a regional atmospheric model. Atmos Sci Lett 1:16–21

    Article  Google Scholar 

  • Takatama K, Minobe S, Inatsu M, Small RJ (2015) Diagnostics for near-surface wind response to the Gulf Stream in a regional atmospheric model. J Clim 28:238–255. doi:10.1175/JCLI-D-13-00668.1

    Article  Google Scholar 

  • Vautard R (1990) Multiple weather regimes over the North Atlantic: analysis of precursors and successors. Mon Weather Rev 118(10):2056–2081

    Article  Google Scholar 

  • Voldoire A et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121

    Article  Google Scholar 

  • Wallace JM, Mitchell TP, Deser C (1989) The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: seasonal and interannual variability. J Clim 2(12):1492–1499

    Article  Google Scholar 

  • Woollings T, Hoskins B, Blackburn M, Hassell D, Hodges K (2010) Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Clim Dyn 35:341. doi:10.1007/s00382-009-0554-3

    Article  Google Scholar 

Download references

Acknowledgments

We thank Fabrice Chauvin and Gwendal Rivière for their assistance in the use of the cyclone detection and Rossby wave breaking algorithms as well as Christophe Cassou for useful discussions. Marie Piazza is supported through a joint EDF-CNRS doctoral fellowship and the ASIV project funded by the French National Research Agency under Contract No. ANR 2011 Blanc SIMI 5-6 01403. Some analyses and graphics have been done using the NCAR Command Language (NCL 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Piazza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piazza, M., Terray, L., Boé, J. et al. Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model. Clim Dyn 46, 1699–1717 (2016). https://doi.org/10.1007/s00382-015-2669-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2669-z

Keywords

Navigation