Skip to main content

Advertisement

Log in

Simulation of the annual and diurnal cycles of rainfall over South Africa by a regional climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The capability of a current state-of-the-art regional climate model for simulating the diurnal and annual cycles of rainfall over a complex subtropical region is documented here. Hourly rainfall is simulated over Southern Africa for 1998–2006 by the non-hydrostatic model weather research and forecasting (WRF), and compared to a network of 103 stations covering South Africa. We used five simulations, four of which consist of different parameterizations for atmospheric convection at a 0.5 × 0.5° resolution, performed to test the physic-dependency of the results. The fifth experiment uses explicit convection over tropical South Africa at a 1/30° resolution. WRF simulates realistic mean rainfall fields, albeit wet biases over tropical Africa. The model mean biases are strongly modulated by the convective scheme used for the simulations. The annual cycle of rainfall is well simulated over South Africa, mostly influenced by tropical summer rainfall except in the Western Cape region experiencing winter rainfall. The diurnal cycle shows a timing bias, with atmospheric convection occurring too early in the afternoon, and causing too abundant rainfall. This result, particularly true in summer over the northeastern part of the country, is weakly physic-dependent. Cloud-resolving simulations do not clearly reduce the diurnal cycle biases. In the end, the rainfall overestimations appear to be mostly imputable to the afternoon hours of the austral summer rainy season, i.e., the periods during which convective activity is intense over the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Betts AK (1986) A new convective adjustment scheme. Part I: observational and theoretical basis. Q J R Meteorol Soc 112:677–691

    Google Scholar 

  • Betts AK, Jakob C (2002) Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J Geophys Res 107(D20):8045. doi:10.1029/2001JD000427

    Article  Google Scholar 

  • Betts AK, Miller MJ (1986) A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q J R Meteorol Soc 112:693–709

    Google Scholar 

  • Blamey RC, Reason CJC (2013) The role of mesoscale convective complexes in Southern Africa summer rainfall. J Clim 26:1654–1668. doi:10.1175/JCLI-D-12-00239.1

    Article  Google Scholar 

  • Boulard D, Pohl B, Crétat J, Vigaud N (2013) Downscaling large-scale climate variability using a regional climate model: the case of ENSO over Southern Africa. Clim Dyn 40:1141–1168. doi:10.1007/s00382-012-1400-6

    Article  Google Scholar 

  • Chen F, Dudhia J (2001a) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: model description and implementation. Mon Weather Rev 129:569–585

    Article  Google Scholar 

  • Chen F, Dudhia J (2001b) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part II: model validation. Mon Weather Rev 129:587–604

    Article  Google Scholar 

  • Cook KH (2000) The South Indian convergence zone and interannual rainfall variability over Southern Africa. J Clim 13:3789–3804

    Article  Google Scholar 

  • Crétat J, Pohl B (2012) How physical parameterizations can modulate internal variability in a regional climate model. J Atmos Sci 69:714–724. doi:10.1175/JAS-D-11-0109.1

    Article  Google Scholar 

  • Crétat J, Macron C, Pohl B, Richard Y (2011) Quantifying internal variability in a regional climate model: a case study for Southern Africa. Clim Dyn 37:1335–1356. doi:10.1007/s00382-011-1021-5

    Article  Google Scholar 

  • Crétat J, Pohl B, Richard Y, Drobinski P (2012) Uncertainties in simulating regional climate of Southern Africa: sensitivity to physical parameterizations using WRF. Clim Dyn 38:613–634. doi:10.1007/s00382-011-1055-8

    Article  Google Scholar 

  • D’Abreton PC, Tyson PD (1995) Divergent and non-divergent water vapour transport over southern Africa during wet and dry conditions. Meteor Atmos Phys 55:47–59

    Article  Google Scholar 

  • D’Abreton PC, Lindesay JA (1993) Water vapour transport over southern Africa during wet and dry early and late summer months. Int J Climatol 13:151–170

    Article  Google Scholar 

  • Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the community climate system model. J Clim 17:930–951

    Article  Google Scholar 

  • Dai A, Giorgi F, Trenberth KE (1999) Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J Geophys Res 104(D6):6377–6402

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thepaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Engelbrecht FA, de Rautenbach CJW, McGregor JL, Katzfey JJ (2002) January and July climate simulations over the SADC region using the limited area model DARLAM. Water SA 28:361–373

    Article  Google Scholar 

  • Evans JP, Westra S (2012) Investigating the mechanisms of diurnal rainfall variability using a regional climate model. J Clim 25:7232–7247. doi:10.1175/JCLI-D-11-00616.1

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Grell GA, Dévényi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett. doi:10.1029/2002GL015311

    Google Scholar 

  • Hernandez-Diaz L, Laprise R, Sushama L, Martynov A, Winger K, Digas B (2013) Climate simulation over CORDEX Africa domain using the fifth-generation Canadian regional climate model (CRCM5). Climate Dyn 40:1415–1433. doi:10.1007/s00382-012-1387-z

    Article  Google Scholar 

  • Hong SY, Lim J-OJ (2006) The WRF single-moment 6-Class microphysics scheme (WSM6). J Kor Meteorol Soc 42:129–151

    Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeor 2:36–50

    Article  Google Scholar 

  • Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Joubert AM, Katzfey JJ, McGregor JL, Ngunyen KC (1999) Simulating midsummer climate over southern Africa using a nested regional climate model. J Geophys Res 104:19015–19025

    Article  Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteor 43:170–181

    Article  Google Scholar 

  • Kgatuke MM, Landman WA, Beraki A, Mbedzi MP (2008) The internal variability of the RegCM3 over South Africa. Int J Climatol 28:505–520

    Article  Google Scholar 

  • Leduc M, Laprise R (2009) Regional climate model sensitivity to domain size. Clim Dyn 32:833–854. doi:10.1007/s00382-008-0400-z

    Article  Google Scholar 

  • Ma LM, Tan ZM (2009) Improving the behavior of the cumulus parameterization for tropical cyclone prediction: convection trigger. Atmos Res 92:190–211. doi:10.1016/j.atmosres.2008.09.022

    Article  Google Scholar 

  • Marsham JH, Dixon N, Garcia-Carreras L, Lister GMS, Parker DJ, Knippertz P, Birch C (2013) The role of moist convection in the West African monsoon system: Insights from continental-scale convection-permitting simulations. Geophys Res Lett 40. doi:10.1002/grl.50347

  • Mason SJ, Jury MR (1997) Climatic variability and change over southern Africa: a reflection on underlying processes. Prog Phys Geogr 21:23–50

    Article  Google Scholar 

  • Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen BO, Déqué M, Fernandez J, Hänsler A, Van Meijgaard E, Samuelsson P, Bamba Sylla M, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25:6057–6078. doi:10.1175/JCLI-D-11-00375.1

    Article  Google Scholar 

  • Philippon N, Rouault M, Richard Y, Favre A (2012) The influence of ENSO on winter rainfall in South Africa. Int J Climatol 32:2333–2347. doi:10.1002/joc.3403

    Article  Google Scholar 

  • Pohl B, Crétat J, Camberlin P (2011) Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim Dyn 37:1357–1379. doi:10.1007/s00382-011-1024-2

    Google Scholar 

  • Ratna SB, Ratnam JV, Behera SK, Rautenbach CJ, Ndarana T, Takahashi K, Yamagata T (2013) Performance assessment of three convective parameterization schemes in WRF for downscaling summer rainfall over South Africa. Clim Dyn (on line). doi:10.1007/s00382-013-1918-2

    Google Scholar 

  • Ratnam JV, Behera SK, Masumoto Y, Takahashi K, Yamagata T (2012) A simple regional coupled model experiment for summer-time climate simulation over southern Africa. Clim Dyn 39:2207–2217. doi:10.1007/s00382-011-1190-2

    Article  Google Scholar 

  • Reason CJC, Jagadheesha D (2005) A model investigation of recent ENSO impacts over southern Africa. Meteorol Atm Phys 89:181–205

    Article  Google Scholar 

  • Rouault M, Richard Y (2003) Intensity and spatial extension of drought in South Africa at different time scales. Water SA 29:489–500

    Google Scholar 

  • Rouault M, White SA, Reason CJC, Lutjeharms JRE, Jobbard I (2002) Ocean-atmosphere interaction in the Agulhas Current region and a South African extreme weather event. Weather Forecast 17:655–669. doi:10.1175/1520-0434(2002)017<0655:OAIITA>2.0.CO;2

    Article  Google Scholar 

  • Rouault M, Reason CJC, Lutjeharms JRE (2003) Underestimation of latent and sensible heat fluxes above the Agulhas Current in NCEP and ECMWF analyses. J Clim 16:776–782. doi:10.1175/1520-0442(2003)016<0776:UOLASH>2.0.CO;2

    Article  Google Scholar 

  • Rouault M, Sen Roy S, Balling RC Jr (2013) The diurnal cycle of rainfall in South Africa in the austral summer. Int J Climatol 33:770–777. doi:10.1002/joc.3451

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newslett 110:25–35

    Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR technical note, NCAR/TN\u2013475?STR, 123 pp

  • Tadross M, Gutowski W Jr, Hewitson B, Jack C, New M (2006) MM5 simulations of interannual change and the diurnal cycle of Southern African regional climate. Theor Appl Climatol 86:63–80

    Article  Google Scholar 

  • Tyson PD, Preston-White RA (2000) The weather and climate of Southern Africa. Oxford University Press, Southern Africa, ISBN:9780195718065, 396 pp

  • Vigaud N, Pohl B, Crétat J (2012) Tropical-temperate interactions over southern Africa simulated by a regional climate model. Clim Dyn 39:2895–2916. doi:10.1007/s00382-012-1314-3

    Article  Google Scholar 

  • Williams C, Kniveton D, Layberry R (2010) Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa. Theor Appl Climatol 99:9–27

    Article  Google Scholar 

Download references

Acknowledgments

This work is a contribution to the LEFE/IDAO VOASSI programme funded by CNRS. The South African Weather Service provided the rainfall data. WRF was provided by the University Corporation for Atmospheric Research website (http://www.mmm.ucar.edu/wrf/users/download/get_source.html). ERA-Interim data were provided by the ECMWF Meteorological Archival and Retrieval System (MARS). Two anonymous reviewers helped improve the manuscript. Mathieu Rouault thanks NRF, WRC, ACCESS, Nansen-Tutu Center for funding and SAWS for rainfall data. Calculations were performed using HPC resources from DSI-CCUB, université de Bourgogne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Pohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohl, B., Rouault, M. & Roy, S.S. Simulation of the annual and diurnal cycles of rainfall over South Africa by a regional climate model. Clim Dyn 43, 2207–2226 (2014). https://doi.org/10.1007/s00382-013-2046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-2046-8

Keywords

Navigation