Skip to main content

Advertisement

Log in

A new atmospheric proxy for sea level variability in the southeastern North Sea: observations and future ensemble projections

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Atmosphere–ocean interactions are known to dominate seasonal to decadal sea level variability in the southeastern North Sea. In this study an atmospheric proxy for the observed sea level variability in the German Bight is introduced. Monthly mean sea level (MSL) time series from 13 tide gauges located in the German Bight and one virtual station record are evaluated in comparison to sea level pressure fields over the North Atlantic and Europe. A quasi-linear relationship between MSL in the German Bight and sea level pressure over Scandinavia and the Iberian Peninsula is found. This relationship is used (1) to evaluate the atmospheric contribution to MSL variability in hindcast experiments over the period from 1871–2008 with data from the twentieth century reanalysis v2 (20CRv2), (2) to isolate the high frequency meteorological variability of MSL from longer-term changes, (3) to derive ensemble projections of the atmospheric contribution to MSL until 2100 with eight different coupled global atmosphere–ocean models (AOGCM’s) under the A1B emission scenario and (4) two additional projections for one AOGCM (ECHAM5/MPI-OM) under the B1 and A2 emission scenarios. The hindcast produces a reasonable good reconstruction explaining approximately 80 % of the observed MSL variability over the period from 1871 to 2008. Observational features such as the divergent seasonal trend development in the second half of the twentieth century, i.e. larger trends from January to March compared to the rest of the year, and regional variations along the German North Sea coastline in trends and variability are well described. For the period from 1961 to 1990 the Kolmogorov-Smirnow test is used to evaluate the ability of the eight AOGCMs to reproduce the observed statistical properties of MSL variations. All models are able to reproduce the statistical distribution of atmospheric MSL. For the target year 2100 the models point to a slight increase in the atmospheric component of MSL with generally larger changes during winter months (October–March). Largest MSL changes in the order of ~5–6 cm are found for the high emission scenario A2, whereas the moderate B1 and intermediate A1B scenarios lead to moderate changes in the order of ~3 cm. All models point to an increasing atmospheric contribution to MSL in the German Bight, but the uncertainties are considerable, i.e. model and scenario uncertainties are in the same order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Albrecht F, Weisse R (2012) Pressure effects on past regional sea level trends and variability in the German Bight. Ocean Dyn 62:1169–1186. doi:10.1007/s10236-012-0557

    Article  Google Scholar 

  • Albrecht F, Wahl T, Jensen J, Weisse R (2011) Determining sea level change in the German Bight. Ocean Dyn 61:2037–2050. doi:10.1007/s10236-011-0462-z

    Article  Google Scholar 

  • Becker GA, Dick S, Dippner JW (1992) Hydrography of the German Bight. Mar Ecol Prog Ser 91:9–18

    Article  Google Scholar 

  • Bromirski PD, Miller AJ, Flick RE, Auad G (2011) Dynamical suppression of sea level rise along the Pacific coast of North America: indications for imminent acceleration. J Geophys Res 116:C07005. doi:10.1029/2010JC006759

    Google Scholar 

  • Calafat FM, Chambers DP, Tsimplis MN (2012) Mechanism of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. J Geophys Res 117:C09022. doi:10.1029/2012JC008285

    Google Scholar 

  • Calafat FM, Chambers DP, Tsimplis MN (2013) Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian Seas: the role of atmospheric forcing. J Geophys Res 118:1287–1301

    Article  Google Scholar 

  • Compo GB, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. Q J R Meterol Soc 137:1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Dangendorf S, Wahl T, Hein H, Jensen J, Mai S, Mudersbach C (2012) Mean sea level variability and influence of the North Atlantic oscillation on long-term trends in the German Bight. Water 4:170–195. doi:10.3390/w4010170

    Article  Google Scholar 

  • Dangendorf S, Mudersbach C, Wahl T, Jensen J (2013a) Characteristics of intra-, inter-annual and decadal sea-level variability and the role of meteorological forcing: the long record of Cuxhaven. Ocean Dyn. 63(2–3): 209–224. doi:10.1007/s10236-013-0598-0

    Article  Google Scholar 

  • Dangendorf S, Mudersbach C, Wahl T, Jensen J (2013b) The seasonal mean sea level cycle in the southeastern North Sea. In: Conley DC, Masselink G, Russell PE, O’Hare TJ (eds) Proceedings 12th international coastal symposium (Plymouth, England), J Coastal Res, Special Issue No. 65, pp. xxx–xxx, ISSN 0749-0208

  • De Winter RC, Sterl A, de Vries JW, Weber SL, Ruessink G (2012) The effect of climate change on extreme wave heights in front of the Dutch coast. Ocean Dyn 62(8):1139–1152

    Article  Google Scholar 

  • De Winter RC, Sterl A, Ruessink BG (2013) Wind extremes in the North Sea basin under climate change: an ensemble study of 12 CMIP5 GCMs. J Geophys Res 118:1–12

    Google Scholar 

  • Dietrich G (1954) Ozeanographisch-meteorologische Einflüsse auf Wasserstandsänderungen des Meeres am Fallbeispiel der Pegelbeobachtungen von Esbjerg. Die Küste 2:130–156

    Google Scholar 

  • Donat MG, Leckebusch GC, Pinto JG, Ulbrich U (2010) European storminess and associated circulation weather types: future changes deduced from a multi-model ensemble of GCM simulations. Clim Res 42:24–43

    Article  Google Scholar 

  • Firing YL, Merrifield MA (2004) Extreme sea level events at Hawaii: influences of mesoscale eddies. Geophys Res Lett 31:L24306

    Article  Google Scholar 

  • Francombe LM, Dijkstra HM (2009) Coherent multi-decadal variability in North Atlantic sea level. Geophys Res Lett 36:L15604

    Google Scholar 

  • Furevik T, Bentsen M, Drange H, Kindem IKT, Kvamtso NG, Sorteberg A (2003) Description and evaluation of the Bergen climate model: arpege coupled with MICOM. Clim Dyn 21:27–51

    Article  Google Scholar 

  • Gomis D, Ruiz S, Sotillo MG, Alvarez-Fanjul E, Terradas J (2008) Low frequency Mediterranean sea level variability: the contribution of atmospheric pressure and wind. Global Planet Change 63(2–3):215–229

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H et al (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Heyen H, Zorita E, von Storch H (1996) Statistical downscaling of monthly mean North Atlanzic air-pressure to sea level anomalies in the Baltic Sea. Tellus A 48:312–323

    Article  Google Scholar 

  • Huebener H, Cubasch U, Langematz U, Spangehl T, Niehörster F, Fast I, Kunze M (2007) Ensemble climate simulations using a fully coupled ocean-troposphere-stratosphere GCM. Phil Trans R Soc A 365:2089–2101

    Article  Google Scholar 

  • Huenicke B, Luterbacher J, Pauling A, Zorita E (2008) Regional differences in winter sea level variations in the Baltic Sea for the past 200 years. Tellus A 60:384–393

    Article  Google Scholar 

  • Hurrel JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. In: Hurrel JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. Geophysical Monograph series, vol 134, pp 1–35

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Jacob D, Göttel H, Kotlarski S, Lorenz P, Sieck K (2008) Klimaauswirkungen und Anpassung in Deutschland. Phase 1: erstellung regionaler Klimaszenarien für Deutschland. UBA Forschungsbericht 204:41–138, http://www.umweltdaten.de/publikationen/fpdf-l/3513.pdf

  • Jensen J, Mudersbach C, Blasi C (2003) Hydrological changes in tidal estuaries due to natural and anthropogenic effects. In: Özhan (ed) Proceedings of the sixth international conference on the Mediterranean coastal environment, MEDCOAST 03, pp 2257–2266

  • Jevrejeva S, Moore JC, Woodworth PL, Grinsted A (2005) Influence of large scale atmospheric circulation on European sea level results based on the wavelet transform method. Tellus A57:183–193

    Article  Google Scholar 

  • Jevrejeva S, Moore JC, Grinsted A, Woodworth PL (2008) Recent global sea level acceleration started over 200 years ago? Geophys Res Lett 35:L08715. doi:10.1029/2008GL033611

    Article  Google Scholar 

  • Johns TC, Durmann CF, Banks HT, Roberts MJ et al (2006) The new Hadley Centre climate model (HadGEM1): evaluation and coupled simulations. J Clim 19:1327–1353

    Article  Google Scholar 

  • Jorda G, Gomis D, Alvarez-Fanjul E, Somot S (2012) Atmospheric contribution to Mediterranean and nearby Atlantic sea level variability under different climate change scenarios. Global Planet Chang 80–81:198–214

    Article  Google Scholar 

  • Jungclaus JH, Keenlyside H, Botzet M, Haak H et al (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler W et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471

    Article  Google Scholar 

  • Katsman CA, Hazeleger W, Drijfhout SS, van Oldenborgh GJ, Burger GJH (2008) Climate scenarios for sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt. Climatic Change 91:351–374

    Article  Google Scholar 

  • Katsman CA, Sterl A, Beersma JJ et al (2011) Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta-The Netherlands as an example. Clim Change. doi:10.1007/s10584-011-0037-5

    Google Scholar 

  • Knutti R, Sedlacek J (2012) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang. doi:10.1038/nclimate1716

    Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple models. J Clim 23:2739–2758

    Article  Google Scholar 

  • Krahe P, Nilson E, Gelhardt U, Lang J (2011) Auswertungen ausgewählter globaler Klimamodelle hinsichtlich atmosphärischer Zirkulationsbedingungen im nordatlantisch-mitteleuropäischen Sektor. BfG-1682

  • Krüger O, Schenk F, Feser F, Weisse R (2012) Inconsistencies between long-term trends in storminess derived from the 20CR reanalysis and observations. J Clim. doi:10.1175/JCLI-D-12-00309.1

    Google Scholar 

  • Langenberg H, Pfizenmayer A, von Storch H, Sündermann J (1999) Storm-related sea level variations along the North Sea coast: natural variability and anthropogenic change. Cont Shelf Res 19(6):821–842

    Article  Google Scholar 

  • Leckebusch GC, Kapala A, Mächel H, Pinto JG, Reyers M (2006) Indizes der Nordatlantischen und Arktischen Oszillation. Promet 34(3–4):95–100

    Google Scholar 

  • Lowe JA, Howard TP, Pardaens A, Tinker J, Holt J, Wakelin S, Milne G, Leake J, Wolf J, Horsburgh K, Reeder T, Jenkins G, Ridley J, Dye S, Bradley S (2009) UK Climate Projections science report: Marine and coastal projections. Met Office Hadley Centre, Exeter

    Google Scholar 

  • Marcos M, Tsimplis MN (2007) Forcing of coastal sea level rise patterns in the North Atlantic and Mediterranean Sea. Geophys Res Lett 34:L18604. doi:10.1029/2007GL030641

    Article  Google Scholar 

  • Marti O, Braconnot P, Bellier J, Benshila R et al (2005) The new IPSL climate system model: IPSL-CM4. Note du Pole de Modelisation, 26

  • Meehl GA et al (2007) Global climate projections. In: Solomon S, Quin D, Manning M et al (eds) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 433–497

    Google Scholar 

  • Merrifield MA, Maltrud ME (2011) Regional sea level trends due to a Pacific trade wind intensification. Geophys Res Lett 38:L21605. doi:10.1029/2011GL049576

    Article  Google Scholar 

  • Miller L, Douglas BC (2007) Gyre-scale atmospheric pressure variations and their relation to 19th and twentieth century sea level rise. Geophys Res Lett 34:L16602

    Google Scholar 

  • Nakicenovic RJ, Alcamo J, Davis G et al (2000) Emission scenarios. A special report of Working Group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from TOPEX and Jason altimeter missions. Mar Geol 33:435–446

    Google Scholar 

  • Nicholls RJ, Marinova N, Lowe JA, Brown S, Vellinga P, de Gusmao D, Hinkel J, Tol RSJ (2011) Sea level rise and its possible impacts given a ‘beyond 4°C world’ in the twenty-first century. Phil Trans R Soc A 369:161–181

    Article  Google Scholar 

  • Niehörster F, Fast I, Huebener H, Cubasch (2008) The stream one ENSEMBLE projections of future climate change. ENSEMBLES Technical Report 3. Available online: http://ensembles-eu.metoffice.com/tech_reports/ETR_3_vn0.pdf

  • Nilson E, Perrin C, Beersma J, Carambia M, Krahe P, de Keizer O, Görgen K (2010) Evaluation of data and processing procedures. In: Görgen K, Beersma J, Brahmer G, Buiteveld H, Carambia M, de Keizer O, Krahe P, Nilson E, Lammersen R, Perrin C, Volken D (2010) Assessment of climate-change impacts on discharge in the Rhine. River Basin: results of the RheinBlick2050 Project. CHR Report No. I-23, pp. 51–95. Download at: http://www.chr-khr.org/files/CHR_I-23.pdf

  • Osborn TJ (2004) Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. Clim Dyn 22(6–7):605–623

    Google Scholar 

  • Palmer T, Shutts G, Hagedorn R, Doblas-Reyes F, Jung T, Leutbecher M (2005) Representing model uncertainty in weather and climate prediction. Annu Rev Earth Plent Sci 33:163–193

    Article  Google Scholar 

  • Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyears M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPIOM1 GCM. Clim Dyn 29:195–210

    Article  Google Scholar 

  • Pinto JG, Zacharias S, Fink AH, Leckebusch GC, Ulbrich U (2009) Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Clim Dyn 32:711–737

    Article  Google Scholar 

  • Ponte RM (2006) Low-frequency sea level variability and the inverted barometer effect. J Atmos Oceanic Technol 23:619–629

    Article  Google Scholar 

  • Proshutinsky A, Ashik I, Häkkinen S, Hunke E, Krishfield R, Maltrud M, Maslowski W, Zhang J (2007) Sea level variability in the Arctic Ocean from AOMIP models. J Geophys Res 112:C04S08

    Google Scholar 

  • Rahmstorf S, Perrette M, Vermeer M (2012) Testing the robustness of semi empirical sea level projections. Clim Dyn 39:861–875

    Article  Google Scholar 

  • Salas-Melia D, Chauvin F, Deque M, Douville H, Gueremy J, Marquet P, Planton S, Roger J, Tyteca S (2005) Decription and validation of the CNRM-CM3 global coupled model. CNRM working note 103

  • Santer BD, Wigley TML, Boyle JS, Gaffen DJ, Hnilo JJ, Nychka D, Parker DE, Taylor KE (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105:7337–7356

    Article  Google Scholar 

  • Selten FM, Branstator GW, Dijkstra HA, Kliphuis M (2004) Tropical originals for recent and future northern hemisphere climate change. Geophys Res Lett 31:L21205. doi:10.1029/2004GL020739

    Article  Google Scholar 

  • Siegismund F, Schrum C (2001) Decadal changes in the wind forcing over the North Sea. Clim Res 18:39–45

    Article  Google Scholar 

  • Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2011) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38:1191–1209. doi:10.1007/s00382-011-1057-6

    Article  Google Scholar 

  • Somot S, Sevault F, Dequet M (2006) Transient climate change scenario simulation oft he Mediterranean Sea fort he twenty-first century using a high-resolution ocean circulation model. Clim Dyn 27:851–879

    Article  Google Scholar 

  • Stammer D, Hüttemann S (2008) Response of regional sea level to atmospheric pressure loading in a climate change scenario. J Climate 21:2093–2101

    Article  Google Scholar 

  • Stephenson DB, Pavan V, Collins M, Junge MM, Quadrelli R (2006) North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Clim Dyn 27:401–420

    Article  Google Scholar 

  • Sterl A, van den Brink H, de Vries H, Haarsma R, van Meijgaard E (2009) An ensemble study of extreme North Sea storm surges in a changing climate. Ocean Sci 5:369–378

    Article  Google Scholar 

  • Sturges W, Douglas BC (2011) Wind effects on estimates of sea level rise. J Geophys Res 116:C06008. doi:10.1029/2010JC006492

    Google Scholar 

  • Sündermann J, Pohlmann T (2011) A brief analysis of North Sea physics. Oceanologica 53(3):663–689

    Article  Google Scholar 

  • Suursaar Ü, Sooäär J (2007) Decadal variations in mean and extreme sea level values alongthe Estonian coast of the Baltic Sea. Tellus A 59:249–260

    Article  Google Scholar 

  • Tsimplis MN, Josey SA (2001) Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophys Res Lett 28:803–806

    Article  Google Scholar 

  • Tsimplis MN, Shaw AGP (2008) The forcing of mean sea level variability around Europe. Global Planet Chang 63(2–3):196–202

    Article  Google Scholar 

  • Tsimplis MN, Woolf DK, Osborn TJ, Wakelin S, Wolf J, Flather R, Shaw AGP, Woodworth P, Challenor P, Blackman D, Pert F, Yan Z, Jerjeva S (2005) Towards a vulnerability assessment of the UK and northern European coasts: the role of regional climate variability. Philosophical transactions. Mathematical, Physical and Engineering Sciences (Series A 363:1329–1358. doi:10.1098/rsta.2005.1571

  • Ullman A, Monbaliu J (2010) Changes in atmospheric circulation over the North Atlantic and sea surge variations along the Belgian coast during the twentieth century. Int J Clim 30:558–568. doi:10.1002/joc.1904

    Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ et al (2005) The ERA-40 reanalysis. Q J R Meteorl Soc 131:2961–3012

    Article  Google Scholar 

  • Van der Linden P, Mitchell JFB (2009) ENSEMBLES–climate-change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3 PB, UK. 160 p

  • Von Storch HV, Zwiers FW (1999) Statistical analysis in climate research, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Wahl T, Jensen J, Frank T (2010) On analysing sea level rise in the German Bright since 1844. Nat Hazards Earth Syst Sci 10:171–179. doi:10.5194/nhess10-171-2010

    Article  Google Scholar 

  • Wahl T, Jensen J, Frank T, Haigh I (2011) Improved estimates of mean sea level changes in the German Bright over the last 166 years. Ocean Dyn 61:701–715. doi:10.1007/s10236-011-0383-x

    Article  Google Scholar 

  • Wakelin S, Woodworth PL, Flather RA, Williams JA (2003) Sea-level dependence on the NAO over the NW European Continental Shelf. Geophys Res Lett 30(7):1403

    Article  Google Scholar 

  • Weisse R, Pluess A (2006) Storm-related sea level variation along the North Sea coast as simulated by a high-resolution model 1958–2002. Ocean Dyn 56(1):16–25

    Article  Google Scholar 

  • Woodworth PL, Flather RA, Williams JA, Wakelin SL, Jevrejewa S (2007) The dependence of UK extreme sea level and storm surges on the North Atlantic Oscillation. Cont Shelf Res 27(7):935–946

    Article  Google Scholar 

  • Woolf DK, Shaw AGP, Tsimplis MN (2003) The influence of the North Atlantic Oscillation on sea level variability. Global Atmos Ozean Syst 9:145–167

    Article  Google Scholar 

  • Yan Z, Tsimplis MN, Woolf D (2004) Analysis of the Relationship between the North Atlantic Oscillation and sea level changes in Northwest Europe. Int J Climatol 24:743–758

    Article  Google Scholar 

Download references

Acknowledgments

The present study was performed within the KLIWAS research program, which is financed by the German Ministry of Transport, Building and Urban Development. We are further grateful to the Waterways and Shipping Administration of the Federal Government (WSV) for providing us the tide gauge data. Furthermore, we acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged. We would particular like to thank Thomas Pohlmann for the fruitful discussions. Two anonymous reviewers are greatly acknowledged for their valuable comments that helped to improve the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sönke Dangendorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dangendorf, S., Wahl, T., Nilson, E. et al. A new atmospheric proxy for sea level variability in the southeastern North Sea: observations and future ensemble projections. Clim Dyn 43, 447–467 (2014). https://doi.org/10.1007/s00382-013-1932-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1932-4

Keywords

Navigation