Skip to main content

Advertisement

Log in

Validating a regional climate model’s downscaling ability for East Asian summer monsoonal interannual variability

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Performance of a regional climate model (RCM), WRF, for downscaling East Asian summer season climate is investigated based on 11-summer integrations associated with different climate conditions with reanalysis data as the lateral boundary conditions. It is found that while the RCM is essentially unable to improve large-scale circulation patterns in the upper troposphere for most years, it is able to simulate better lower-level meridional moisture transport in the East Asian summer monsoon. For precipitation downscaling, the RCM produces more realistic magnitude of the interannual variation in most areas of East Asia than that in the reanalysis. Furthermore, the RCM significantly improves the spatial pattern of summer rainfall over dry inland areas and mountainous areas, such as Mongolia and the Tibetan Plateau. Meanwhile, it reduces the wet bias over southeast China. Over Mongolia, however, the performance of precipitation downscaling strongly depends on the year: the WRF is skillful for normal and wet years, but not for dry years, which suggests that land surface processes play an important role in downscaling ability. Over the dry area of North China, the WRF shows the worst performance. Additional sensitivity experiments testing land effects in downscaling suggest the initial soil moisture condition and representation of land surface processes with different schemes are sources of uncertainty for precipitation downscaling. Correction of initial soil moisture using the climatology dataset from GSWP-2 is a useful approach to robustly reducing wet bias in inland areas as well as to improve spatial distribution of precipitation. Despite the improvement on RCM downscaling, regional analyses reveal that accurate simulation of precipitation over East China, where the precipitation pattern is strongly influenced by the activity of the Meiyu/Baiu rainfall band, is difficult. Since the location of the rainfall band is closely associated with both lower-level meridional moisture transport and upper-level circulation structures, it is necessary to have realistic upper-air circulation patterns in the RCM as well as lower-level moisture transport in order to improve the circulation-associated convective rainfall band in East Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. We define the sub-domain names here for convenience in the presentation. Some sub-regions cover several countries and/or regions.

References

  • Broccoli AJ, Manabe S (1992) The effects of orography on midlatitude northern hemisphere dry climates. J Clim 5:1181–1201

    Article  Google Scholar 

  • Castro CL, Pielke RA Sr, Leoncini G (2005) Dynamical downscaling: assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). J Geophys Res 110:D05108. doi:10.1029/2004JD004721

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: model description and implementation. Mon Weather Rev 129:569–585

    Article  Google Scholar 

  • Christensen OB, Christensen JH, Machenhauer B, Botzet M (1998) Very high-resolution regional climate simulations over Scandinavia-Present climate. J Clim 11:3204–3229

    Article  Google Scholar 

  • De Sales F, Xue Y (2006) Investigation of seasonal prediction of the South American regional climate using the nested model system. J Geophys Res 111:D20107. doi:10.1029/2005JD006989

    Article  Google Scholar 

  • De Sales F, Xue Y (2011) Assessing the dynamic downscaling ability over South America using a precipitation verification approach. Int J Climatol 31:1205–1221. doi:10.1002/joc.2139

    Article  Google Scholar 

  • De Sales F, Xue Y (2012) Dynamic downscaling of CFS winter seasonal simulations over the United States using the ETA/SSIB-3 model. Clim Dyn. doi:10.1007/s00382-012-1567-x

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Denis B, Laprise RL, Caya D (2003) Sensitivity of a regional climate model to the resolution of the lateral boundary conditions. Clim Dyn 20:107–126. doi:10.1007/s00382-002-0264-6

    Google Scholar 

  • Dickinson RE, Errico RM, Giorgi F, Bates GT (1989) A regional climate model for western United States. Clim Change 15:383–422

    Google Scholar 

  • Diffenbaugh NS, Ashfaq M, Shuman B, Williams JW, Bartlein PJ (2006) Summer aridity in the United States: response to mid-holocene changes in insolation and sea surface temperature. Geophys Res Lett 33:L22712. doi:10.1029/2006GL028012

    Article  Google Scholar 

  • Dirmeyer PA, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N (2006) GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull Am Meteorol Soc 87:1381–1397

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Vidale PL, Luthi D, Schar C (2007) Soil moisture-atmosphere interactions during the 2003 European summer heat wave. J Climate 20:5081–5099

    Article  Google Scholar 

  • Fu C, Wang S, Xiong Z, Gutowski WJ, Lee DK, McGregor JL, Sato Y, Kato H, Kim JW, Suh MS (2005) Regional climate model intercomparison project for Asia. Bull Am Meteorol Soc 86:257–266

    Article  Google Scholar 

  • Gao YH, Xue Y, Peng W, Kang HS, Waliser D (2011) Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model. Adv Atmos Sci 28:1077–1098. doi:10.1007/s00376-010-0039-7

    Article  Google Scholar 

  • Giorgi F, Bates GT (1989) The climatological skill of a regional model over complex terrain. Mon Weather Rev 117:2325–2347

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104:6335–6352

    Article  Google Scholar 

  • Giorgi F, Christensen J, Hulme M, Storch H, Whetton P, Jones R, Mearns L, Fu C, Arritt R, Bates B, Benestad R, Boer G, Buishand A, Castro M, Chen D, Cramer W, Crane R, Crossly J, Dehn M, Dethloff K, Dippner J, Emori S, Francisco R, Fyfe J, Gerstengarbe F, Gutowski W, Gyalistras D, Hanssen-Bauer I, Hantel M, Hassell D, Heimann D, Jack C, Jacobeit J, Kato H, Katz R, Kauker F, Knutson T, Lal M, Landsea C, Laprise R, Leung L, Lynch A, May W, McGregor J, Miller N, Murphy J, Ribalaygua J, Rinke A, Rummukainen M, Semazzi F, Walsh K, Werner P, Widmann M, Wilby R, Wild M, Xue Y (2001) Regional climate information—evaluation and projections, climate change 2001: the scientific basis. In: Houghton JT et al (eds) Contribution of working group to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 881

    Google Scholar 

  • Gong W, Wang WC (2000) A regional model simulation of the 1991 severe precipitation event over the Yangtze–Huai River Valley. Part II: model bias. J Clim 13:93–108

    Article  Google Scholar 

  • Guo Z et al (2006) GLACE: the global land–atmosphere coupling experiment. Part II: analysis. J Hydrometeorol 7:611–625

    Article  Google Scholar 

  • Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Hoskins BJ, Rodwell MJ (1995) A model of the Asian summer monsoon. Part I: the global scale. J Atmos Sci 52:1329–1340

    Article  Google Scholar 

  • Ishizaki NN, Takayabu I, Oh’izumi M, Sasaki H, Dairaku K, Iizuka S, Kimura F, Kusaka H, Adachi SA, Kurihara K, Tanaka K (2012) Improved performance of simulated Japanese climate with a multi-model ensemble. J Meteorol Soc Jpn 90:235–254

    Article  Google Scholar 

  • Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Kanae S, Oki T, Musiake K (2001) Impact of deforestation on regional precipitation over the Indochina Peninsula. J Hydrometeorol 2:51–70

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kang HS, Hong SY (2008) Sensitivity of the simulated East Asian summer monsoon climatology to four convective parameterization schemes. J Geophys Res 113:D15119. doi:10.1029/2007JD009692

    Article  Google Scholar 

  • Kang HS, Xue Y, Collatz GJ (2007) Assessment of satellite-derived leaf area index datasets using a general circulation model: seasonal variability. J Clim 20:993–1015

    Article  Google Scholar 

  • Koster RD et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140. doi:10.1126/science.1100217

    Article  Google Scholar 

  • Li WP, Xue Y (2005) Numerical simulation of the impact of vegetation index on the interannual variation of summer precipitation in the Yellow River Basin. Adv Atmos Sci 22:865–876

    Article  Google Scholar 

  • Liang XZ, Wang WC (1998) Associations between China monsoon rainfall and tropospheric jets. Q J R Meteorol Soc 124:2597–2623

    Article  Google Scholar 

  • Liang XZ, Li L, Kunkel KE, Ting M, Wang JXL (2004) Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: annual cycle. J Clim 17:3510–3529

    Article  Google Scholar 

  • Marbaix P, Gallee H, Brasseur O, van Ypersele JP (2003) Lateral boundary conditions in regional climate models: a detailed study of the relaxation procedure. Mon Weather Rev 131:461–479

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682

    Article  Google Scholar 

  • Mo K, Kanamitsu M, Juang HMH, Hong SY (2000) Ensemble regional and global climate prediction for the 1997/1998 winter. J Geophys Res 105:29609–29623

    Article  Google Scholar 

  • Natsagdorj L, Dagvadorj D (2010) The adaptation to climate change in Mongolia. Ministry of Nature, Environment and Tourism of Mongolia, Ulaanbaatar, p 26 (in Mongolian)

  • Ninomiya K, Akiyama T (1992) Multi-scale features of Baiu, the summer monsoon over Japan and East Asia. J Meteorol Soc Jpn 70:467–495

    Google Scholar 

  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432

    Article  Google Scholar 

  • Park S, Hong SY (2004) The role of surface boundary forcing over south Asia in the Indian summer monsoon circulation: a regional climate model sensitivity study. Geophys Res Lett 31:12112. doi:10.1029/2004GL019729

    Article  Google Scholar 

  • Pielke RA Sr, Liston GE, Eastman JL, Lu L, Coughenour M (1999) Seasonal weather prediction as an initial value problem. J Geophys Res 104:19463–19479

    Article  Google Scholar 

  • Sampe T, Xie SP (2010) Large-scale dynamics of the Meiyu-Baiu rainband: environmental forcing by the westerly jet. J Clim 23:113–134

    Article  Google Scholar 

  • Sato T (2009) Influences of subtropical jet and Tibetan Plateau on precipitation pattern in Asia: insights from regional climate modeling. Quat Int 194:148–158. doi:10.1016/j.quaint.2008.07.008

    Article  Google Scholar 

  • Sato T, Kimura F (2007) Comparative study on the land-cover change and global warming impacts on regional climate in Northeast Asia. In: Proceedings of the 19th conference on climate variability and change, San Antonio, TX. Extended abstract available at http://ams.confex.com/ams/pdfpapers/117639.pdf

  • Sato T, Tsujimura M, Yamanaka T, Iwasaki H, Sugimoto A, Sugita M, Kimura F, Davaa G, Oyunbaatar D (2007a) Water sources in semi-arid Northeast Asia as revealed by field observations and isotope transport model. J Geophys Res Atmos 112:D17112. doi:10.1029/2006JD008321

    Article  Google Scholar 

  • Sato T, Kimura F, Kitoh A (2007b) Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J Hydrol 333:144–154. doi:10.1016/j.jhydrol.2006.07.023

    Article  Google Scholar 

  • Sato T, Yoshikane T, Satoh M, Miura H, Fujinami H (2008) Resolution dependency of the diurnal cycle of convective clouds over the Tibetan Plateau in a mesoscale model. J Meteorol Soc Jpn 86A:17–31

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR TECHNICAL NOTE, NCAR/TN–475+STR

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Treadon RE, Petersen RA (1993) Domain size sensitivity experiments using the NMC Eta model. In: Proceedings of the 13th conference on weather analysis and forecasting, Vienna, VA, USA, pp 176–177 (preprints)

  • von Storch H, Langerberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128:3664–3673

    Article  Google Scholar 

  • Wang Y, Sen OL, Wang B (2003) A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: model description and verification of simulation. J Clim 16:1721–1738

    Article  Google Scholar 

  • Wang Y, Leung LR, McGregor JL, Lee DK, Wang WC, Ding Y, Kimura F (2004) Regional climate modeling: progress, challenges, and prospects. J Meteorol Soc Jpn 82:1599–1628

    Article  Google Scholar 

  • Warner TT, Peterson RA, Treadon RE (1997) A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull Am Meteorol Soc 78:2599–2617

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Xie SP, Xu H, Saji NH, Wang Y, Liu WT (2006) Role of narrow mountains in large-scale organization of Asian monsoon convection. J Clim 19:3420–3429

    Article  Google Scholar 

  • Xu ZF, Yang ZL (2012) An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J Clim 25:6271–6286. http://dx.doi.org/10.1175/JCLI-D-12-00005.1

    Google Scholar 

  • Xue Y, Sellers PJ, Kinter JL, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364

    Article  Google Scholar 

  • Xue Y, Zeng FJ, Mitchell KE, Janjic Z, Rogers E (2001) The impact of land surface processes on simulations of the U.S. hydrological cycle: a case study of the 1993 flood using the SSiB land surface model in the NCEP Eta regional model. Mon Weather Rev 129:2833–2860

    Article  Google Scholar 

  • Xue Y, Juang HMH, Li W, Prince S, DeFries R, Jiao Y, Vasic R (2004) Role of land surface processes in monsoon development: East Asia and West Africa. J Geophy Res 109:D03105. doi:10.1029/2003JD003556

    Article  Google Scholar 

  • Xue Y, Vasic R, Janjic Z, Mesinger F, Mitchell KE (2007) Assessment of dynamic downscaling of the continental U.S. regional climate using the Eta/SSiB regional climate model. J Clim 20:4172–4193

    Article  Google Scholar 

  • Xue Y, De Sales F, Lau KMW, Boone A, Feng J, Dirmeyer P, Guo Z, Kim KM, Kitoh A, Kumar V, Poccard-Leclercq I, Mahowald N, Moufouma-Okia W, Pegion P, Rowell D, Schubert SD, Sealy A, Thiaw WM, Vintzileos A, Williams S, Wu MLC (2010a) Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation Project (WAMME) first model intercomparison experiment. In special issue “West African monsoon and its modeling”. Clim Dyn 35:3–27. doi:10.1007/s00382-010-0778-2

    Google Scholar 

  • Xue Y, De Sales F, Vasic R, Mechooso CR, Prince SD, Arakawa A (2010b) Global and temporal characteristics of seasonal climate/vegetation biophysical process (VBP) interactions. J Clim 23:1411–1433

    Article  Google Scholar 

  • Xue Y, Vasic R, Janjic J, Liu YM, Chu PC (2012) The impact of spring subsurface soil temperature anomaly in the Western U. S. on North American summer precipitation—a case study using regional climate model downscaling. J Geophys Res 117:D11103. doi:10.1029/2012JD017692

    Article  Google Scholar 

  • Yamazaki N, Takahashi L, Yatagai A (2003) Report on the GAME reanalysis. GAME phase 1 summary reports. GAME publication 37, pp 81–87

  • Yatagai A, Arakawa O, Kamiguchi K, Kawamoto H, Nodzu MI, Hamada A (2009) A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. SOLA 5:137–140

    Article  Google Scholar 

  • Yoshikane T, Kimura F, Emori S (2001) Numerical study on the Baiu front genesis by heating contrast between land and ocean. J Meteorol Soc Jpn 79:671–686

    Article  Google Scholar 

  • Yoshimura K, Oki T, Ohte N, Kanae S (2004) Colored moisture analysis estimates of variations in 1998 Asian Monsoon water sources. J Meteorol Soc Jpn 82:1315–1329

    Article  Google Scholar 

  • Zhang DL, Zheng WZ, Xue Y (2003) A numerical study of early summer regional climate and weather over LSA-East. Part I: model implementation and verification. Mon. Weather Rev 131:1895–1909

    Article  Google Scholar 

Download references

Acknowledgments

The APHRODITE dataset was obtained at the project’s web site (http://www.chikyu.ac.jp/precip/). This study was funded by the Environment Research and Technology Development Fund S-8-1(2) of the Ministry of the Environment, Japan, the Research Program on Climate Change Adaptation (RECCA) of the Ministry of Education, Culture, Sports, Science and Technology, Japan, and the National Science Foundation under grants AGS-1115506 and ATM-0751030. TS was supported by the excellent young researcher overseas visit program funded by JSPS for visiting to UCLA. The NCAR super computer has been used for the computation for this paper. We also appreciate the help of Dr. Fernando De Sales in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, T., Xue, Y. Validating a regional climate model’s downscaling ability for East Asian summer monsoonal interannual variability. Clim Dyn 41, 2411–2426 (2013). https://doi.org/10.1007/s00382-012-1616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1616-5

Keywords

Navigation