Skip to main content

Advertisement

Log in

Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The cold equatorial SST bias in the tropical Pacific that is persistent in many coupled OAGCMs severely impacts the fidelity of the simulated climate and variability in this key region, such as the ENSO phenomenon. The classical bias analysis in these models usually concentrates on multi-decadal to centennial time series needed to obtain statistically robust features. Yet, this strategy cannot fully explain how the models errors were generated in the first place. Here, we use seasonal re-forecasts (hindcasts) to track back the origin of this cold bias. As such hindcasts are initialized close to observations, the transient drift leading to the cold bias can be analyzed to distinguish pre-existing errors from errors responding to initial ones. A time sequence of processes involved in the advent of the final mean state errors can then be proposed. We apply this strategy to the ENSEMBLES-FP6 project multi-model hindcasts of the last decades. Four of the five AOGCMs develop a persistent equatorial cold tongue bias within a few months. The associated systematic errors are first assessed separately for the warm and cold ENSO phases. We find that the models are able to reproduce either El Niño or La Niña close to observations, but not both. ENSO composites then show that the spurious equatorial cooling is maximum for El Niño years for the February and August start dates. For these events and at this time of the year, zonal wind errors in the equatorial Pacific are present from the beginning of the simulation and are hypothesized to be at the origin of the equatorial cold bias, generating too strong upwelling conditions. The systematic underestimation of the mixed layer depth in several models can also amplify the growth of the SST bias. The seminal role of these zonal wind errors is further demonstrated by carrying out ocean-only experiments forced by the AOCGCMs daily 10-meter wind. In a case study, we show that for several models, this forcing is sufficient to reproduce the main SST error patterns seen after 1 month in the AOCGCM hindcasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • AchutaRao K, Sperber K (2006) ENSO simulations in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–16

    Article  Google Scholar 

  • An SI, Ham YG, Kug JS, Timmermann A, Choi J, Kang IS (2010) The inverse effect of annual-mean state and annual-cycle changes on ENSO. J Clim 23:1095

    Article  Google Scholar 

  • Balmaseda MA, Vidard A, Anderson DLT (2008) The ECMWF ocean analysis system: Ora-s3. Mon Wea Rev 136(8):3018–3034

    Article  Google Scholar 

  • Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–2011: is our capability increasing? Bul Am Meteorol Soc 93(5):631–651

    Google Scholar 

  • Biasutti M, Sobel AH, Kushnir Y (2006) AGCM precipitation biases in the tropical Atlantic. J Clim 19:935

    Article  Google Scholar 

  • Boucharel J, Dewitte B, Garel B, Du Penhoat Y (2009) ENSO’s non-stationary and non-Gaussian character: the role of climate shifts. Nonlin Proc Geophys 16:453–473

    Article  Google Scholar 

  • Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An era40-based atmospheric forcing for global ocean circulation models. Ocean Modell 31(3-4):88–104

    Article  Google Scholar 

  • Brown J, Fedorov A, Guilyardi E (2011) How well do coupled models replicate ocean energetics relevant to enso? Clim Dyn 36:2147–2158

    Article  Google Scholar 

  • Capotondi A, Wittenberg A, Masina S (2006) Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell 15:274–298

    Article  Google Scholar 

  • Chen D, Cane MA, Zebiak SE, Cañizares R, Kaplan A (2000) Bias correction of an ocean-atmosphere coupled model. Geophys Res Lett 27:2585–2588

    Article  Google Scholar 

  • Davey M, Huddleston M et al (2001) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18:403–420

    Google Scholar 

  • de Szoeke SP, Xie SP (2008) The tropical Eastern Pacific seasonal cycle: assessment of errors and mechanisms in IPCC AR4 coupled ocean atmosphere general circulation models. J Clim 21:2573

    Article  Google Scholar 

  • Doblas-Reyes FJ, Weisheimer A, Déqué M, Keenlyside N, McVean M, Murphy JM, Rogel P, Smith D, Palmer TN (2009) Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Q J R Meterol Soc 135(643):1538–1559

    Article  Google Scholar 

  • Echevin V, Goubanova K, Belmadani A, Dewitte B (2011) Sensitivity of the humboldt current system to global warming: a downscaling experiment of the ipsl-cm4 model. Clim Dyn 1–14

  • Fedorov AV, Philander SG (2001) A stability analysis of tropical ocean-atmosphere interactions: bridging measurements and theory for El Ni-o. J Clim 14:3086–3101

    Article  Google Scholar 

  • Gualdi S, Alessandri A, Navarra A (2005) Impact of atmospheric horizontal resolution on El Niño Southern Oscillation forecasts. Tellus A 57:357

    Article  Google Scholar 

  • Guilyardi E (2006) El Niño—mean state—seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:229–348

    Article  Google Scholar 

  • Guilyardi E, Gualdi S, Slingo JM, Navarra A, Delecluse P, Cole J, Madec G, Roberts M, Latif M, Terray L (2004) Representing El Niño in coupled ocean-atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17:4623–4629

    Article  Google Scholar 

  • Guilyardi E, Braconnot P, Jin FF, Kim ST, Kolasinski M, Li T, Musat I (2009) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh G (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Am Meterol Soc 90(3):325–340

    Article  Google Scholar 

  • Hendon HH, Lim E, Wang G, Alves O, Hudson D (2009) Prospects for predicting two flavors of El Niño. Geophys Res Lett 36:L19713

    Article  Google Scholar 

  • Jin EK, III JLK, Wang B, Park CK, Kang IS, Kirtman BP, Kug JS, Kumar A, Luo JJ, Schemm J, Shukla J, Yamagata T (2008) Current status of enso prediction skill in coupled ocean-atmosphere models. Clim Dyn 31:647–664

    Google Scholar 

  • Jin F, Hoskins BJ (1995) The direct response to tropical heating in a baroclinic atmosphere. J Atmos Sci 52:307–319

    Article  Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin FF, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33:L23,708

    Google Scholar 

  • Kamala K, Peings Y, Terray P, Douville H (2011) Enso-indian monsoon teleconnection in the cnrm and ipsl historical simulations (submitted)

  • Kim S, Jin FF (2011) An enso stability analysis. part ii: results from the twentieth and twenty-first century simulations of the cmip3 models. Clim Dyn 36:1609–1627

    Article  Google Scholar 

  • Lazar A, Vintzileos A, Doblas-Reyes FJ, Rogel P, Delecluse P (2005) Seasonal forecast of tropical climate with coupled ocean“atmosphere general circulation models: on the respective role of the atmosphere and the ocean components in the drift of the surface temperature error. Tellus A 57(3):387–397

    Article  Google Scholar 

  • Lee JY, Wang B, Kang IS, Shukla J, Kumar A, Kug JS, Schemm J, Luo JJ, Yamagata T, Fu X, Alves O, Stern B, Rosati T, Park CK (2010) How are seasonal prediction skills related to models performance on mean state and annual cycle? Clim Dyn 35:267–283

    Article  Google Scholar 

  • Leloup J, Lengaigne M, Boulanger JP (2008) Twentieth century enso characteristics in the ipcc database. Clim Dyn 30:277–291

    Article  Google Scholar 

  • Liebmann B, Smith C (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  • Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean-atmosphere feedback analysis. J Clim 20(18):4497–4525

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H, Slingo J (2009) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos Sci Lett 10(3):170–176

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H (2011) The role of atmosphere feedbacks during enso in the cmip3 models. part ii: using amip runs to understand the heat flux feedback mechanisms. Clim Dyn 37:1271–1292

    Article  Google Scholar 

  • Luo J, Masson S, Behera S, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497

    Article  Google Scholar 

  • Madec G (2008) Nemo ocean engine. France, Institut Pierre-Simon Laplace (IPSL)

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) Enso as an integrating concept in earth science. Science 314(5806):1740–1745

    Article  Google Scholar 

  • Meehl GA, Gent PR, Arblaster JM, Otto-Bliesner BL, Brady EC, Craig A (2001) Factors that affect the amplitude of el niño in global coupled climate models. Clim Dyn 17:515

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meterol Soc 88:1383–1394

    Article  Google Scholar 

  • van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Sci 1:81–95

    Article  Google Scholar 

  • Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ (2008) Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull Am Meteorol Soc 89:459

    Article  Google Scholar 

  • Palmer TN, Weisheimer A (2011) Diagnosing the causes of bias in climate models why is it so hard? Geophys Astroph Fluid Dyn 105(2–3):351–365

    Article  Google Scholar 

  • Philander S, Gu D, Lambert G, Li T, Halpern D, Lau NC, Pacanowski R (1996) Why the ITCZ is mostly north of the equator. J Clim 9:2958–2972

    Article  Google Scholar 

  • Power S, Haylock M, Colman R, Wang X (2006) The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J Clim 19:4755

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res (Atmos) 108:4407

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite sst analysis for climate. J Clim 15(13):1609–1625

    Article  Google Scholar 

  • Richter I, Xie SP (2008) On the origin of equatorial atlantic biases in coupled general circulation models. Clim Dyn 31:587–598

    Article  Google Scholar 

  • Roberts W, Battisti D (2011) A new tool for evaluating the physics of coupled atmosphere ocean variability in nature and in general circulation models. Clim Dyn 36:907–923

    Article  Google Scholar 

  • Rossow W, Walker A, Beuschel D, Roiter M (1996) International satellite cloud climatology project (ISCCP) documentation of new cloud datasets. WMO/TD-No 737. World Meteorol Organ 737:115

  • Stevenson S, Fox-Kemper B, Jochum M, Rajagopalan B, Yeager SG (2010) ENSO model validation using wavelet probability analysis. J Clim 23:5540–5547

    Article  Google Scholar 

  • Terray P, Delecluse P, Labattu S, Terray L (2003) Sea surface temperature associations with the late indian summer monsoon. Clim Dyn 21:593–618

    Article  Google Scholar 

  • Uppala SM, Kallberg P, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LV, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Morcrette JJ, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meterol Soc 131:2961–3012

    Article  Google Scholar 

  • van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Sci 1:81–95

    Article  Google Scholar 

  • Vialard J, Menkes C, Boulanger JP, Delecluse P, Guilyardi E, McPhaden MJ, Madec G (2001) A model study of oceanic mechanisms affecting equatorial Pacific Sea surface temperature during the 1997 98 El Niño. J Phys Oceanogr 31:1649–1675

    Article  Google Scholar 

  • Wang W, McPhaden MJ (1999) The surface-layer heat balance in the equatorial Pacific Ocean. Part I: mean seasonal cycle. J Phys Oceanogr 29:1812–1831

    Article  Google Scholar 

  • Weisheimer A, Doblas-Reyes F, Palmer T, Alessandri A, Arribas A, Deque M, Keenlyside N, MacVean M, Navarra A, Rogel P (2009) Ensembles: a new multi-model ensemble for seasonal-to-annual predictions: skill and progress beyond demeter in forecasting tropical pacific SSTs. Geophys Res Lett 36(21):L21,711

    Article  Google Scholar 

  • Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 361:L12,702

    Google Scholar 

  • Wittenberg AT, Rosati A, Lau NC, Ploshay JJ (2006) GFDLs CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722

    Article  Google Scholar 

  • Wyrtki K (1981) An estimate of equatorial upwelling in the Pacific. J Phys Oceanogr 11:1205–1214

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes (OAFlux) for the global oceans. Bull Am Meterol Soc 88:527–539

    Article  Google Scholar 

  • Zhang X, McPhaden MJ (2010) Surface layer heat balance in the eastern equatorial Pacific Ocean on interannual time scales: influence of local versus remote Wind forcing. J Clim 23:4375–4394

    Article  Google Scholar 

Download references

Acknowledgments

We thank Antje Weisheimer, Sandrine Bony and Christophe Cassou for discussions and constructive comments. Pascal Terray’s help to compute the significance tests is acknowledged. The research leading to these results has received funding from the French Ministry of the Environment (MEDDM), under the EPIDOM project, and the European Union, Seventh Framework Programme, IS-ENES, EUCLIPSE (FP7/2007-2013) under grant agreement n 244067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Vannière.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vannière, B., Guilyardi, E., Madec, G. et al. Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Clim Dyn 40, 963–981 (2013). https://doi.org/10.1007/s00382-012-1429-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1429-6

Keywords

Navigation