Skip to main content

Advertisement

Log in

Analysis of the long-term surface wind variability over complex terrain using a high spatial resolution WRF simulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This work uses a WRF numerical simulation from 1960 to 2005 performed at a high horizontal resolution (2 km) to analyze the surface wind variability over a complex terrain region located in northern Iberia. A shorter slice of this simulation has been used in a previous study to demonstrate the ability of the WRF model in reproducing the observed wind variability during the period 1992–2005. Learning from that validation exercise, the extended simulation is herein used to inspect the wind behavior where and when observations are not available and to determine the main synoptic mechanisms responsible for the surface wind variability. A principal component analysis was applied to the daily mean wind. Two principal modes of variation accumulate a large percentage of the wind variability (83.7%). The first mode reflects the channeling of the flow between the large mountain systems in northern Iberia modulated by the smaller topographic features of the region. The second mode further contributes to stress the differentiated wind behavior over the mountains and valleys. Both modes show significant contributions at the higher frequencies during the whole analyzed period, with different contributions at lower frequencies during the different decades. A strong relationship was found between these two modes and the zonal and meridional large scale pressure gradients over the area. This relationship is described in the context of the influence of standard circulation modes relevant in the European region like the North Atlantic Oscillation, the East Atlantic pattern, East Atlantic/Western Russia pattern, and the Scandinavian pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Archer CL, Jacobson MZ (2003) Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. J Geophys Res 108(D9):4289. doi:10.1029/2002JD002076

    Article  Google Scholar 

  • Archer CL, Jacobson MZ (2004) Correction to “Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements”. J Geophys Res 109:D20116. doi:10.1029/2004JD005099

    Article  Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Buckley RL (2004) Statistical comparison of Regional Atmospheric Modelling System forecasts with observations. Meteorol Appl 11:67–82

    Article  Google Scholar 

  • Burlando M, Antonelli M, Ratto CF (2008) Mesoscale wind climate analysis: identification of anemological regions and wind regimes. Int J Climatol 28:629–641

    Article  Google Scholar 

  • Davy R, Woods M, Russell C, Coppin P (2010) Statistical downscaling of wind variability from meteorological fields. Bound Layer Meteorol 135(1):161–175

    Article  Google Scholar 

  • Fairless D (2007) How did a little Spanish province become one of the world’s wind-energy giants? Nature 447:1046–1048

    Article  Google Scholar 

  • García-Bustamante E, González-Rouco JF, Jiménez PA, Navarro J, Montávez JP (2008) The influence of the Weibull assumption in monthly wind energy estimation. Wind Energy 11:483–502

    Article  Google Scholar 

  • García-Bustamante E, González-Rouco JF, Jiménez PA, Navarro J, Montávez JP (2009) A comparison of methodologies for monthly wind energy estimations. Wind Energy 12:640–659

    Article  Google Scholar 

  • García-Bustamante E, González-Rouco JF, Navarro J, Xoplaki E, Jiménez PA, Montávez JP (2012) North Atlantic atmospheric circulation and surface wind in the Northeast of the Iberian Peninsula: uncertainty and long term downscaled variability. Clim Dyn 38:141–160

    Article  Google Scholar 

  • George SS, Wolfe SA (2009) El Niño stills winter winds across the southern Canadian Prairies. Geophys Res Lett 36:L23806. doi:10.1029/2009GL041282

    Article  Google Scholar 

  • Guo H, Xu M, Hu Q (2011) Changes in near-surface wind speed in China: 1969–2005. Int J Climatol 31:349–358

    Article  Google Scholar 

  • He Y, Monahan AH, Jones CG, Dai A, Biner S, Caya D, Winger K (2010) Probability distributions of land surface wind speeds over North America. J Geophys Res 115:D04103. doi:10.1029/2008JD010708

    Article  Google Scholar 

  • Horel J, Splitt M, Dunn L, Pechmann J, White B, Cliberti C, Lazarus S, Slemmer J, Zaff D, Burks J (2002) Mesowest: cooperative mesonets in the western United States. Bull Am Meteorol Soc 83:211–225

    Article  Google Scholar 

  • Hughes M, Hall A (2010) Local and synoptic mechanisms causing Southern California’s Santa Ana winds. Clim Dyn 34(6):847–857

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the north atlantic oscillation: Regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Jiménez PA, Dudhia J (2012) Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J Appl Meteorol Climatol 51:300–316

    Article  Google Scholar 

  • Jiménez PA, González-Rouco JF, Montávez JP, Navarro J, García-Bustamante E, Valero F (2008) Surface wind regionalization in complex terrain. J Appl Meteorol Climatol 47:308–325

    Article  Google Scholar 

  • Jiménez PA, González-Rouco JF, Montávez JP, García-Bustamante E, Navarro J (2009a) Climatology of wind patterns in the northeast of the Iberian Peninsula. Int J Climatol 29:501–525

    Article  Google Scholar 

  • Jiménez PA, Montávez JP, García-Bustamante E, Navarro J, Jiménez-Gutiérrez JM, Lucio-Eceiza EE, González-Rouco JF (2009b) Diurnal surface wind variations over complex terrain. Física de la Tierra 21:79–91

    Google Scholar 

  • Jiménez PA, González-Rouco JF, García-Bustamante E, Navarro J, Montávez JP, Vilà-Gueraude Arellano J, Dudhia J, Roldán A (2010a) Surface wind regionalization over complex terrain: evaluation and analysis of a high resolution WRF numerical simulation. J Appl Meteorol Climatol 49:268–287

    Article  Google Scholar 

  • Jiménez PA, González-Rouco JF, Navarro J, Montávez JP, García-Bustamante E (2010b) Quality assurance of surface wind observations from automated weather stations. J Atmos Ocean Technol 27:1101–1122

    Article  Google Scholar 

  • Jiménez PA, Vilà-Gueraude Arellano J, González-Rouco JF, Navarro J, Montàvez JP, García-Bustamante E, Dudhia J (2011) The effect of heatwaves and drought on the surface wind circulations in the NE of the Iberian Peninsula during the summer of 2003. J Clim 24:5416–5422

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40 year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kaufmann P, Weber RO (1996) Classification of mesoscale wind fields in the MISTRAL field experiment. J Appl Meteorol 35:1963–1979

    Article  Google Scholar 

  • Kaufmann P, Whiteman CD (1999) Cluster-analysis classification of wintertime wind patterns in the Grand Canyon region. J Appl Meteorol 38:1131–1147

    Article  Google Scholar 

  • Kendall MG, Gibbons JD (1990) Rank correlation methods, 5th edn. Griffin, London

    Google Scholar 

  • Klink K (1999) Trends in mean monthly maximum and minimum surface wind speeds in the coterminous United States, 1961 to 1990. Clim Res 13:193–205

    Article  Google Scholar 

  • Klink K (2002) Trends and interannual variability of wind speed distributions in Minnesota. J Clim 15:3311–3317

    Article  Google Scholar 

  • Klink K (2007) Atmospheric circulation effects on wind speed variability at turbine height. J Appl Meteorol Climatol 46:445–456

    Article  Google Scholar 

  • Lo JCF, Yang ZL, Pielke RA Sr (2008) Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J Geophys Res 113:D09112

    Article  Google Scholar 

  • Ludwig FL, Horel J, Whiteman CD (2004) Using EOF analysis to identify important surface winds patterns in mountain valleys. J Appl Meteorol 43:969–983

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Martín M, Valero F, Morata A, Luna M, Pascual A, Santos-Muñoz D (2011) Springtime coupled modes of regional wind in the Iberian Peninsula and large-scale variability patterns. Int J Climatol 31:880–895

    Article  Google Scholar 

  • McVicar TR, Van Niel TG, Li LT, Roderick ML, Rayner DP, Ricciardulli L, Donohue RJ (2008) Wind speed climatology and trends for Australia, 1975–2006: capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys Res Lett 35:L20403. doi:10.1029/2008GL035627

    Article  Google Scholar 

  • McVicar T, Van Niel T, Roderick M, Li L, Mo X, Zimmermann N, Schmatz D (2010) Observational evidence from two mountainous regions that near-surface wind speeds are declining more rapidly at higher elevations than lower elevations: 1960–2006. Geophys Res Lett 37(6):L06402

    Article  Google Scholar 

  • Millàn MM, nano BA, Alonso L, Navazo M (1991) The effect of meso-scale flows on regional and long-range atmospheric transport in the western Mediterranean area. Atmos Environ 25:949–963

    Article  Google Scholar 

  • PaiMazumder D, Mölders N (2009) Theoretical assessment of uncertainty in regional averages due to network density and design. J Appl Meteorol Climatol 48(8):1643–1666

    Article  Google Scholar 

  • Palutikof JP, Kelly PM, Davies TD, Halliday JA (1987) Impacts of spatial and temporal wind speed variability on wind energy output. J Appl Meteorol 26:1124–1133

    Article  Google Scholar 

  • Pryor SC, Barthelmie RJ (2003) Long-term trends in near-surface flow over the Baltic. Int J Climatol 23:271–289

    Article  Google Scholar 

  • Pryor SC, Ledolter J (2010) Addendum to “Wind speed trends over the contiguous United States”. J Geophys Res 115:D10103. doi:10.1029/2009JD013281

    Article  Google Scholar 

  • Pryor SC, Barthelmie RJ, Young DT, Takle ES, Arritt RW, Flory D, Gutowski WJ Jr, Numes A, Roads J (2009) Wind speed trends over the contiguous United States. J Geophys Res 114:D14105

    Article  Google Scholar 

  • Rahimzadeh F, Noorian A, Pedram M, Kruk M (2011) Wind speed variability over Iran and its impact on wind power potential: a case study for Esfehan Province. Meteorol Appl 18:198–210

    Article  Google Scholar 

  • Rife DR, Davis CA (2005) Verification of temporal variations in mesoscale numerical wind forecast. Mon Weather Rev 133:3368–3381

    Article  Google Scholar 

  • Rife DR, Davis CA, Liu Y, Warner TT (2004) Predictability of low-level winds by mesoscale meteorological models. Mon Weather Rev 132:2533–2569

    Article  Google Scholar 

  • Rife D, Davis C, Knievel J (2009) Temporal changes in wind as objects for evaluating mesoscale numerical weather prediction. Wea Forecasting 24(5):1374–1389

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF Version 2. Tech. Rep. TN-468+STR, NCAR

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Trenberth KE, Paolino DA (1980) The northern hemispheric sea-level pressure data set: trends, errors and discontinuities. Mon Weather Rev 108:855–872

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars A, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen P, Jenne R, McNally AP, Mahfouf J, Morcrette J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The era-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Vautard R, Cattiaux J, Yiou P, Thépaut J, Ciais P (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3(11):756–761

    Article  Google Scholar 

  • Wan H, Wang X, Swail V (2010) Homogenization and trend analysis of Canadian near-surface wind speeds. J Clim 23(5):1209–1225

    Article  Google Scholar 

  • Xu M, Chang CP, Fu C, Qi Y, Robock A, Robinson D, Zhang H (2006) Steady decline of east Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed. J Geophys Res 111:D24111. doi:10.1029/2006JD007337

    Article  Google Scholar 

  • Zagar N, Zagar M, Cedilnik J, Gregoric G, Rakovec J (2006) Validation of mesoscale low-level winds obtained by dynamical downscaling of ERA40 over complex terrain. Tellus 58:445–455

    Article  Google Scholar 

Download references

Acknowledgments

This investigation was partially supported by projects CGL-2008-05093/CLI, CGL-2011-29677-C02, and PSE-120000-2008-9 and was accomplished within the collaboration agreement 09/153 between CIEMAT and UCM as well as the collaboration agreement 09/490 between CIEMAT and NCAR. NCAR is sponsored by the National Science Foundation. We would like to thank the Navarra Government and the ECMWF for facilitating the access to their data sets. We also would like to thank the reviewers for their comments which helped to improve the quality of the original manuscript. An initial version of the wavelet software was provided by C. Torrence and G. Compo (available on line at http://atoc.colorado.edu/research/wavelets/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro A. Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, P.A., González-Rouco, J.F., Montávez, J.P. et al. Analysis of the long-term surface wind variability over complex terrain using a high spatial resolution WRF simulation. Clim Dyn 40, 1643–1656 (2013). https://doi.org/10.1007/s00382-012-1326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1326-z

Keywords

Navigation