Skip to main content

Advertisement

Log in

A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The possibility of applying either the maximum entropy production conjecture of Paltridge (Q J R Meteorol Soc 101:475–484, 1975) or the conjecture of Lorenz (Generation of available potential energy and the intensity of the general circulation. Pergamon, Tarrytown, 1960) of maximum generation of available potential energy (APE) in FAMOUS, a complex but low-resolution AOGCM, is explored by varying some model parameters to which the simulated climate is highly sensitive, particularly the convective entrainment rate, \(\epsilon\), and cloud droplet-to-rain-conversion rate, c T . The climate response is analysed in terms of its entropy production and the strength of the Lorenz energy cycle. If either conjecture is true, the parameter values which yield the most realistic climate will also maximise the relevant quantity. No maximum is found in the total material entropy production, which is dominated by the hydrological cycle and tends to increase monotonically with global-mean temperature, which is not constant because the parameter variations affect the net input of solar radiation at the top of the atmosphere (TOA). In contrast, there is a non-monotonic, peaked behaviour in the generation of APE and entropy production associated with kinetic energy dissipation, with the standard FAMOUS values for \(\epsilon\) and c T occurring nearly at the maximising ones. The maximum states are shown to be states of vigorous baroclinic activity. The peak in the generation of APE appears to be related to a trade-off between the mean vertical stability and horizontal stratification. Experiments are repeated for a simplified setup in which the net solar input at TOA is fixed. Again a peak in the generation of APE is found in association with the maximum baroclinic activity, but no trade-off of the kind shown by simple climate models is found between meridional heat transport and the meridional temperature gradient. We conclude that the maximum entropy production conjecture does not hold within the climate system when the effects of the hydrological cycle and radiative feedbacks are taken into account, but our experiments provide some evidence in support of the conjecture of maximum APE production (or equivalently maximum dissipation of kinetic energy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrological cycle. Nature 419:224–232

    Article  Google Scholar 

  • Ambaum MHP (2010) Thermal physics of the atmosphere. Wiley, Chichester, 256pp

  • Bejan A, Lorente S (2004) The constructal law and the thermodynamics of flow systems with configuration. Int J Heat Mass Transf 47:3203–3214

    Article  Google Scholar 

  • Boer GJ, Lambert S (2008) The energy cycle in the atmospheric model. Clim Dyn 30:371–390

    Article  Google Scholar 

  • Cullen MJP, Davies T (1991) A conservative split-explicit integration scheme with fourth order horizontal advection. Q J R Meteorol Soc 117:993–1002

    Article  Google Scholar 

  • Dewar RC (2005) Maximum entropy production and the fluctuation theorem. J Phys A 38:L371–L381

    Article  Google Scholar 

  • Dewar RC (2009) Maximum entropy production as an inference algorithm that translates physical assumption into macroscopic predictions: don’t shoot the messenger. Entropy 11:931–944

    Article  Google Scholar 

  • Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. part one: choosing a configuration for a large-scale model. Q J R Meteorol Soc 122:689–719

    Article  Google Scholar 

  • Egger J (1999) Numerical generation of entropies. Mon Weather Rev 127:2211–2216

    Article  Google Scholar 

  • Fraedrich K, Lunkeit F (2008) Diagnosing the entropy budget of a climate model. Tellus A 60(5):921–931

    Article  Google Scholar 

  • Fraedrich K, Jansen H, Kirk E, Luksch U, Lunkeit F (2005) The planet simulator: towards a user friendly model. Meteorol Z 14:299–304

    Article  Google Scholar 

  • Fraedrich K, Kirk E, Luksch U, Lunkeit F (2005) The portable university model of the atmosphere (PUMA): storm track dynamics and low-frequency variability. Meteorol Z 14:735–745

    Article  Google Scholar 

  • Goody R (2000) Sources and sinks of climate entropy. Q J R Meteorol Soc 126:1953–1970

    Article  Google Scholar 

  • Goody R (2007) Maximum entropy production in climate theory. J Atmos Sci 64:2735–2739

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Grassl H (1981) The climate at the maximum-entropy production by meridional atmospheric and oceanic heat fluxes. Q J R Meteorol Soc 107:153–166

    Article  Google Scholar 

  • Gregory D (1995) A consistent treatment of the evaporation of rain and snow for use in large-scale models. Mon Weather Rev 123:2716–2732

    Article  Google Scholar 

  • Gregory D (1998) Unified model documentation paper no. 28. Technical report, Meteorological Office

  • Gregory D, Rowntree PR (1990) A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon Weather Rev 118:1483–1506

    Article  Google Scholar 

  • Grinstein G, Linsker R (2007) Comments on a derivation and application of the maximum entropy production principle. J Phys A 40:9717–9720

    Article  Google Scholar 

  • Hernández-Deckers D, Von Storch J (2009) Energetics responses to increases in greenhouse gas concentration. J Clim 23:3874–3887

    Article  Google Scholar 

  • Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47(15):1854–1864

    Article  Google Scholar 

  • James IN (1994) Introduction to circulating atmosphere. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Johnson DR (1997) “General Coldness of Climate Models” and the second law: implications for modelling the earth system. J Clim 10:2826–2846

    Article  Google Scholar 

  • Jones C, Gregory J, Thorpe R, Cox P, Murphy J, Sexton D, Valdes P (2005) Systematic optimisation and climate simulation of FAMOUS, a fast version of HadCM3. Clim Dyn 25:189–204

    Article  Google Scholar 

  • Kleidon A (2004) Beyond gaia: thermodynamic of life and earth system functioning. Clim Change 66:271–319

    Article  Google Scholar 

  • Kleidon A (2005) Hyperdiffusion, maximum entropy production, and the simulated equator-pole temperature gradient in an atmospheric general circulation model. http://hdl.handle.net/1903/1927

  • Kleidon A (2009) Nonequilibrium thermodynamics and maximum entropy production in the earth system. Naturwissenschaften 96:653–677

    Article  Google Scholar 

  • Kleidon A (2010) Life, hierarchy and the thermodynamic machinery of planet Earth. Phys Life Rev (in press)

  • Kleidon A, Fraedrich K, Kunz T, Lunkeit F, (2003) The atmospheric circulation and the states of maximum entropy production. Geophys Res Lett 30(23)

  • Kleidon A, Fraedrich K, Kirk E, Lunkeit F (2006) Maximum entropy production and the strenght of boundary layer exchange in an atmospheric general circulation model. Geophys Res Lett 33(L06706):4. doi:10.1029/2005GL025373

    Google Scholar 

  • Kunz T, Fraedrich K, Kirk E (2008) Optimisation of simplified GCMs using circulation indices and maximum entropy production. Clim Dyn 30:803–813

    Article  Google Scholar 

  • Lorenz EN (1955) Available potential energy and the maintenance of the general circulation. Tellus 7:271–281

    Article  Google Scholar 

  • Lorenz EN (1960) Generation of available potential energy and the intensity of the general circulation. Pergamon, Tarrytown

    Google Scholar 

  • Lorenz EN (1967) The nature and theory of the general circulation of the atmosphere, volume 218.TP.115. World Meteorological Organization

  • Lorenz RD, Lunine JI, Withers PG, McKay CP (2001) Titan, mars and earth: entropy production by latitudinal heat transport. Geophys Res Lett 28(3):415–418

    Article  Google Scholar 

  • Lucarini V (2009) Thermodynamic efficiency and entropy production in the climate system. Phys Rev E 80:021118. doi:10.1103/PhysRevE.80.02118

    Article  Google Scholar 

  • Lucarini V, Fraedrich K, Lunkeit F (2010) Thermodynamic analysis of snowball earth hysteresis experiment: efficiency, entropy production and irreversibility. Q J R Meteorol Soc 136:1–11

    Article  Google Scholar 

  • Lucarini V, Fraedrich K, Lunkeit F (2010b) Thermodynamics of climate change: generalized sesnitivities. Atmos Chem Phy 10:9729–9737. doi:10.5194/acp-10-9729-2010

    Google Scholar 

  • Malkus WVR (2003) Borders of disordrs: in turbulent channel flow. J Fluid Mech 489:185–198

    Article  Google Scholar 

  • Martyushev LM, Seleznev VD (2006) Maximum entropy production principle in physics,chemistry and biology. Phys Rep 426:1–45

    Article  Google Scholar 

  • Murakami S, Kitoh A (2005) Euler-lagrange equation of the most simple 1-D climate model based on the maximum entropy production hypothesys. Q J R Meteorol Soc 131(608):1529–1538

    Article  Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772

    Article  Google Scholar 

  • Noda A, Tokioka T (1983) Climates at minima of the entropy exchange rate. J Meteorol Soc Jpn 61:894–908

    Google Scholar 

  • Odum HT (1988) Self-organization, transformity and information. Sci Agric 242:1132–1139

    Google Scholar 

  • O’Gorman PA, Schneider T (2008) Energy of midlatitude transient eddies in idealized simulations of changed climates. J Clim 21:5797–5808. doi:10.1175/2008JCLI2099.1

    Google Scholar 

  • Ozawa H, Ohmura A (1997) Thermodynamics of a global-mean state of the atmosphere: a state of maximum entropy increase. J Clim 10:441–445

    Article  Google Scholar 

  • Ozawa H, Ohmura A, Lorenz R, Pujol T (2003) The second law of thermodynamics and the global climate system: a review of the maximum entropy production principle. Rev Geophys 41(1018):24. doi:10.1029/2002RG000113

    Google Scholar 

  • Paltridge GW, Farquhar GD, Cuntz M (2007) Maximum entropy production, cloud feedback, and climate change. Geophys Res Lett 34(L14708):6. doi:10.1029/2007GL029925

  • Paltridge GW (1975) Global dynamics and climate-a system of minimum entropy exchange. Q J R Meteorol Soc 101:475–484

    Article  Google Scholar 

  • Paltridge GW (1978) The steady state format of global climate. Q J R Meteorol Soc 104:927–945

    Article  Google Scholar 

  • Paltridge GW (2001) A physical basis for a maximum of thermodynamic dissipation of the climate system. Q J R Meteorol Soc 127:305–313

    Article  Google Scholar 

  • Pascale S, Gregory JM, Ambaum M, Tailleux R (2009) Climate entropy budget of the HadCM3 atmosphere-ocean general circulation model and FAMOUS, its low-resolution version. Clim Dyn. doi:10.1007/s00382–009–0718–1

  • Pauluis O, Held IM (2002a) Entropy budget of an atmosphere in radiative-convective equilibrium. Part I: maximum work and frictional dissipation. J Atmos Sci 59:125–139

    Article  Google Scholar 

  • Pauluis O, Held IM (2002b) Entropy budget of an atmosphere in radiative-convective equilibrium. Part II: latent heat transport and moist processes. J Atmos Sci 59:140–149

    Article  Google Scholar 

  • Peixoto JP, Oort AH, de Almeida M, Tomé A (1991) Entropy budget of the atmosphere. J Geophys Res 96(D6):10981–10988

    Article  Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model–HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Pujol T, Fort J (2002) States of maximum entropy production in a one-dimensional vertical model with convective adjustments. Tellus A 54:363–369

    Article  Google Scholar 

  • Reichler T, Kim J (2008) How well do coupled models simulate today’s climate?. Bull Am Meteorol Soc 89:303–311

    Article  Google Scholar 

  • Rodgers CD (1976) Minimum entropy exchange principle-reply. Q J R Meteorol Soc 102:455–457

    Google Scholar 

  • Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of the climate changes. Rev Geophys 48(RG3001):22. doi:10.1029/2009RG000302

  • Schulman LL (1977) A theoretical study of the efficiency of the general circulation. J Atmos Sci 34:559–580

    Article  Google Scholar 

  • Siegmund P (1994) The generation of available potential energy, according to Lorenz’ exact and approximate equations. Tellus 46(A):566–582

    Google Scholar 

  • Smith RNB (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Q J R Meteorol Soc 116:435–460

    Article  Google Scholar 

  • Smith RNB (1993) Unified model documentation paper no. 24. Technical report, Meteorological Office

  • Smith RS, Gregory JM, Osprey A (2008) A description of the FAMOUS (version xdbua) climate model and control run. Geosci Model Develop 1:147–185

    Article  Google Scholar 

  • Tailleux R (2010) Entropy versus APE production: on the buoyancy power input in the oceans energy cycle. Geophys Res Lett 37(L22603). doi:10.1029/2010GL044962

  • Volk T, Pauluis O (2010) It is not the entropy you produce, rather, how you produce it. Philos Trans R Soc B 365:1317–1322. doi:10.1098/rstb.2010.0019

    Google Scholar 

  • Wang B, Nakajima T, Shi G (2008) Cloud and water vapor feedbacks in a vertical energy-balance model with maximum entropy production. J Clim 21(24):6689–6698

    Article  Google Scholar 

Download references

Acknowledgments

Salvatore Pascale thanks Robin Smith for the help provided with FAMOUS experiments and Valerio Lucarini for helpful comments. Jonathan Gregory is supported by the NCAS-Climate Programme and the Joint DECC and Defra Integrated Climate Programme, DECC/Defra (GA01101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Pascale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascale, S., Gregory, J.M., Ambaum, M.H.P. et al. A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM. Clim Dyn 38, 1211–1227 (2012). https://doi.org/10.1007/s00382-011-0996-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-0996-2

Keywords

Navigation