Skip to main content
Log in

Boreal summer intraseasonal oscillations and seasonal Indian monsoon prediction in DEMETER coupled models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Even though multi-model prediction systems may have better skill in predicting the interannual variability (IAV) of Indian summer monsoon (ISM), the overall performance of the system is limited by the skill of individual models (single model ensembles). The DEMETER project aimed at seasonal-to-interannual prediction is not an exception to this case. The reasons for the poor skill of the DEMETER individual models in predicting the IAV of monsoon is examined in the context of the influence of external and internal components and the interaction between intraseasonal variability (ISV) and IAV. Recently it has been shown that the ISV influences the IAV through very long breaks (VLBs; breaks with duration of more than 10 days) by generating droughts. Further, all VLBs are associated with an eastward propagating Madden–Julian Oscillation (MJO) in the equatorial region, facilitated by air–sea interaction on intraseasonal timescales. This VLB-drought–MJO relationship is analyzed here in detail in the DEMETER models. Analyses indicate that the VLB-drought relationship is poorly captured by almost all the models. VLBs in observations are generated through air–sea interaction on intraseasonal time scale and the models’ inability to simulate VLB-drought relationship is shown to be linked to the models’ inability to represent the air–sea interaction on intraseasonal time scale. Identification of this particular deficiency of the models provides a direction for improvement of the model for monsoon prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ajayamohan RS, Rao SA, Yamagata T (2008) Influence of Indian Ocean Dipole on poleward propagation of boreal summer intraseasonal oscillations. J Clim 21:5437–5454

    Article  Google Scholar 

  • Annamalai H, Slingo J (2001) Active/break cycles: diagnosis of the intraseasonal variability over the Asian summer monsoon. Clim Dyn 18:85–102

    Article  Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean Dipole on the relationship between the Indian Monsoon Rainfall and ENSO. Geophys Res Lett 28:4499–4502. doi:10.1029/2001GL013294

    Article  Google Scholar 

  • Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean Dipole on the Indian summer monsoon. J Clim 17:3141–3155

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Nino Modoki and its possible teleconnection. J Geophys Res 112. doi:10.1029/2006JC003798

  • Bamzai AS, Shukla J (1999) Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: an observational study. J Clim 12:3117–3132

    Article  Google Scholar 

  • Bhalme HN, Jadhav SK, Mooley DA, Ramana Murty BhV (1986) Forecasting of monsoon performance over India. J Climatol 6:347–354

    Article  Google Scholar 

  • Blanford HF (1884) On the connection of the Himalaya snowfall with dry winds and seasons of drought in India. Proc R Soc Lond 37:3–22

    Article  Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022

    Article  Google Scholar 

  • Ferranti L, Slingo JM, Palmer TN, Hoskins BJ (1997) Relations between interannual and intraseasonal monsoon variability as diagnosed from AMIP integrations. Quart J R Meteorol Soc 123:1323–1357

    Article  Google Scholar 

  • Gadgil S, Sajani S (1998) Monsoon precipitation in the AMIP runs. Clim Dyn 14:659–689

    Article  Google Scholar 

  • Gadgil S, Joseph PV, Joshi NV (1984) Ocean-atmosphere coupling over the monsoon regions. Nature 312:141–143

    Article  Google Scholar 

  • Goswami BN (1998) Interannual variation of Indian summer monsoon in a GCM: external conditions versus internal feedbacks. J Clim 11:501–522

    Article  Google Scholar 

  • Goswami BN (2005) South Asian Monsoon. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere-ocean climate system, chap. 2, pp 19–61

  • Goswami BN, AjayaMohan RS (2001) Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J Clim 14:1180–1198

    Article  Google Scholar 

  • Goswami P, Srividya (1996) A novel neural network design for long-range prediction of rainfall pattern. Curr Sci 70:447–457

    Google Scholar 

  • Goswami BN, Xavier PK (2005) Dynamics of ‘Internal’ interannual variability of Indian Summer Monsoon in a GCM. J Geophys Res 110:D24104. doi:10.1029/2005JD006042

    Article  Google Scholar 

  • Goswami BN, Wu G, Yasunari T (2006) The annual cycle, intraseasonal oscillations and roadblock to seasonal predictability of the Asian summer monsoon. J Clim 19:5078–5099

    Article  Google Scholar 

  • Gowarikar V, Thapliyal V, Sarker RP, Mandal GS, Sikka DR (1989) Parametric and power regression models: new approach to long range forecasting of monsoon rain in India. Mausam 40:125–130

    Google Scholar 

  • Gowarikar V, Thapliyal V, Kulshrestha SM, Mandal GS, Sen Roy N, Sikka DR (1991) A power regression model for long-range forecast of southwest monsoon rainfall over India. Mausam 42:125–130

    Google Scholar 

  • Hoyos CD, Webster PJ (2007) The role of intraseasonal variability in the nature of Asian monsoon precipitation. J Clim 20:4402–4424

    Article  Google Scholar 

  • Jiang X, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17:1022–1039

    Article  Google Scholar 

  • Joseph S, Sahai AK, Goswami BN (2008) Eastward propagating MJO during boreal summer and Indian monsoon droughts. Clim Dyn. doi:10.1007/s00382-008-0412-8

  • Kang I-S, Shukla J (2006) Dynamic seasonal prediction and predictability of monsoon. In: Wang B (ed) The Asian monsoon, chap. 15, pp 585–612

  • Kang I-S, Jin K, Wang B, Lau K-M, Shukla J, Krishnamurthy V, Schubert S, Wailser DE, Stern W, Kitoh A, Meehl G, Kanamitsu M, Galin V, Satyan V, Park C-K, Liu Y (2002) Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Clim Dyn 19:383–395

    Article  Google Scholar 

  • Kang I-S, Lee J-Y, Park C-K (2004) Potential predictability of summer mean precipitation in a dynamical seasonal prediction system with systematic error correction. J Clim 17:834–844

    Article  Google Scholar 

  • Kim H-M, Kang I-S, Wang B, Lee J-Y (2008) Interannual variations of the boreal summer intraseasonal variability predicted by ten atmosphere-ocean coupled models. Clim Dyn 30:485–496

    Article  Google Scholar 

  • Krishnan R, Zhang C, Sugi M (2000) Dynamics of breaks in the Indian summer monsoon. J Atmos Sci 57:1354–1372

    Article  Google Scholar 

  • Krishnan R, Kumar V, Sugi M, Yoshimura J (2009) Internal feedbacks from monsoon–midlatitude interactions during droughts in the Indian Summer Monsoon. J Atmos Sci 66:553–578

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Madden RA, Julian PR (1994) Observations of the 40–50-day tropical oscillations—a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  • Martin G, Dearden C, Greeves C, Hinton T, Inness P, James P, Pope V, Ringer M, Slingo J, Stratton R, Yang G-Y (2004) Evaluation of the atmospheric performance of HadGAM/GEM1. Hadley Centre Tech Note 54:1–64

    Google Scholar 

  • Palmer TN, Alessandri A, Anderson U, Cantelaube P, Davey M, Délécluse P, Déqué M, Díez E, Dobblas-Reyers FJ, Fedderson H, Graham R, Gualdi S, Guérémy J-F, Hagedorn R, Hoshen M, Keenlyside N, Latif M, Lazar A, Maisonnave E, Marletto V, Morse AP, Orfila B, Rogel P, Terres J-M, Thomson MC (2004) Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872

    Article  Google Scholar 

  • Rajeevan M, Pai DS, Thapliyal V (1998) Spatial and temporal relationships between global and surface air temperature anomalies and Indian summer monsoon. Meteorol Atmos Phys 66:157–171

    Article  Google Scholar 

  • Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91:296–306

    Google Scholar 

  • Rajeevan M, Pai DS, Anil Kumar R, Lal B (2007) New statistical models for long-range forecasting of southwest monsoon rainfall over India. Clim Dyn 28:813–828

    Article  Google Scholar 

  • Rassmusson EM, Carpenter TH (1983) The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Srilanka. Mon Weather Rev 111:517–528

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929–948

    Article  Google Scholar 

  • Sahai AK, Soman MK, Satyan V (2000) All India summer monsoon rainfall prediction using artificial neural network. Clim Dyn 16:291–302

    Article  Google Scholar 

  • Sahai AK, Grimm AM, Satyan V, Pant GB (2002) Prospects of prediction of Indian summer monsoon rainfall using global SST anomalies. IITM Res Rep RR-093:1–44

    Google Scholar 

  • Sahai AK, Grimm AM, Satyan V, Pant GB (2003) Long-lead prediction of Indian summer monsoon rainfall from Global SST evolution. Clim Dyn 20:855–863

    Google Scholar 

  • Sahai AK, Chattopadhyay R, Goswami BN (2008) A SST based large multi-model ensemble forecasting system for Indian summer monsoon rainfall. Geophys Res Lett. doi: 10.1029/2008GL035461

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Shukla J, Mooley DA (1987) Empirical prediction of the summer monsoon rainfall over India. Mon Weather Rev 115:695–704

    Article  Google Scholar 

  • Slingo JM, Sperber KR, Boyle JS, Ceron JP, Dix M, Dugas B, Ebisuzaki W, Fyfe J, Gregory D, Gueremy JF, Hack J, Harzallah A, Inness P, Kitoh A, Lau WKM, McAvaney B, Madden R, Mattews A, Palmer TN, Park CK, Randall D, Renno N (1996) Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Clim Dyn 12:325–357

    Article  Google Scholar 

  • Sperber KR, Palmer TN (1996) Interannual tropical rainfall variability in general circulation model simulations associated with Atmospheric Model Intercomparison Project. J Clim 9:2727–2750

    Article  Google Scholar 

  • Sperber KR, Brankovic C, Deque M, Frederiksen CS, Graham R, Kitoh A, Kobayashi C, Palmer TN, Puri K, Tennant W, Volodin E (2001) Dynamical seasonal predictability of the Asian summer monsoon. Mon Weather Rev 129:2226–2248

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Waliser DE, Jin K, Kang I-s, Stern SD, Schubert SD, Wu MC, Lau K-M, Lee M-I, Krishnamurthy V, Kitoh A, Meehl GA, Galin VY, Satyan V, Mandke SK, Wu G, Liu Y, Park C-K (2003) AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Clim Dyn 21:423–446

    Article  Google Scholar 

  • Walker GT (1923) Correlation in seasonal variations of weather. III: A preliminary study of world weather. Mem Ind Meteorol Dept 24:75–131

    Google Scholar 

  • Walker GT (1924) Correlation in seasonal variations of weather. IV: A further study of world weather. Mem Ind Meteorol Dept 24:275–332

    Google Scholar 

  • Walker GT, Bliss EW (1932) World weather. Mem R Meteorol Soc 4:53–84

    Google Scholar 

  • Wang B, Kang I-S, Lee J-Y (2004) Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J Clim 17:699–710

    Google Scholar 

  • Wang B, Ding QH, Fu XH, Kang I-S, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711

    Article  Google Scholar 

  • Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J Atmos Sci 56:374–399

    Article  Google Scholar 

  • Xavier PK, Goswami BN (2007) A promising alternative to prediction of seasonal mean all India rainfall. Curr Sci 93:195–202

    Google Scholar 

  • Xavier PK, Duvel JP, Doblas-Reyes FJ (2008) Boreal summer intraseasonal variability in coupled seasonal hindcasts. J Clim 21:4477–4497

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Xie P, Janowiak JE, Arkin PA, Adler RF, Gruber A, Ferraro RR, Huffman GJ, Curtis S (2003) GPCP Pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. J Clim 16:2197–2214

    Article  Google Scholar 

Download references

Acknowledgments

Susmitha Joseph acknowledges the Council of Scientific and Industrial Research (CSIR), Government of India for financial support. We also thank INDO-FRENCH project (Project No. 3907/1) for support and Dr. Prince K. Xavier of LMD/CNRS and Peter McLean of UK Met Office for making available the SST datasets from DEMETER project. We are also thankful to the two anonymous reviewers for their valuable, in-depth and constructive comments, which helped considerably in improving the scientific content of the present study. IITM is funded by Ministry of Earth Sciences (MoES), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Sahai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, S., Sahai, A.K. & Goswami, B.N. Boreal summer intraseasonal oscillations and seasonal Indian monsoon prediction in DEMETER coupled models. Clim Dyn 35, 651–667 (2010). https://doi.org/10.1007/s00382-009-0635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0635-3

Keywords

Navigation