Skip to main content

Advertisement

Log in

Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In order to improve the reliability of climate reconstruction, especially the climatologies outside the modern observed climate space, an improved inverse vegetation model using a recent version of BIOME4 has been designed to quantitatively reconstruct past climates, based on pollen biome scores from the BIOME6000 project. The method has been validated with surface pollen spectra from Eurasia and Africa, and applied to palaeoclimate reconstruction. At 6 cal ka BP (calendar years), the climate was generally wetter than today in southern Europe and northern Africa, especially in the summer. Winter temperatures were higher (1–5°C) than present in southern Scandinavia, northeastern Europe, and southern Africa, but cooler in southern Eurasia and in tropical Africa, especially in Mediterranean regions. Summer temperatures were generally higher than today in most of Eurasia and Africa, with a significant warming from ∼3 to 5°C over northwestern and southern Europe, southern Africa, and eastern Africa. In contrast, summers were 1–3°C cooler than present in the Mediterranean lowlands and in a band from the eastern Black Sea to Siberia. At 21 cal ka BP, a marked hydrological change can be seen in the tropical zone, where annual precipitation was ∼200–1,000 mm/year lower than today in equatorial East Africa compared to the present. A robust inverse relationship is shown between precipitation change and elevation in Africa. This relationship indicates that precipitation likely had an important role in controlling equilibrium-line altitudes (ELA) changes in the tropics during the LGM period. In Eurasia, hydrological decreases follow a longitudinal gradient from Europe to Siberia. Winter temperatures were ∼10–17°C lower than today in Eurasia with a more significant decrease in northern regions. In Africa, winter temperature was ∼10–15°C lower than present in the south, while it was only reduced by ∼0–3°C in the tropical zone. Comparison of palaeoclimate reconstructions using LGM and modern CO2 concentrations reveals that the effect of CO2 on pollen-based LGM reconstructions differs by vegetation type. Reconstructions for pollen sites in steppic vegetation in Europe show warmer winter temperatures under LGM CO2 concentrations than under modern concentrations, and reconstructions for sites in xerophytic woods/scrub in tropical high altitude regions of Africa are wetter for LGM CO2 concentrations than for modern concentrations, because our reconstructions account for decreased plant water use efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barker P, Gasse F (2003) New evidence for a reduced water balance in East Africa during the Last Glacial Maximum: implication for model-data comparison. Q Sci Rev 22:823–837

    Article  Google Scholar 

  • Barrows TT, Juggins S (2005) Sea-surface temperatures around the Australian margin and Indian Ocean during the Last Glacial Maximum. Q Sci Rev 24:1017–1047

    Article  Google Scholar 

  • Bartlein PJ, Anderson KH, Anderson PM, Edeards ME, Mock CJ, Thompson RS, Webb RS, Webb III T, Whitlock C (1998) Paleclimate simulations for North America over the past 21,000 years: features of the simulated climate and comparisons with paleoenvironmental data. Q Sci Rev 17:547–585

    Article  Google Scholar 

  • Bert D, Leavitt SW, Dupouey JL (1997) Variations of wood delta 13C and water-use efficiency of Abies alba during the last century. Ecology 78:1588–1596

    Google Scholar 

  • Bonnefille R, Chalie F (2000) Pollen-inferred precipitation time-series from equatorial mountains, Africa, the last 40 kyr BP. Global Planet Change 26:25–50

    Article  Google Scholar 

  • Bonnefille R, Chalie F, Guiot J, Vincens A (1992) Quantitative estimates of full glacial temperatures in equatorial Africa from palynological data. Clim Dyn 6:251–257

    Article  Google Scholar 

  • Bonnefille R, Roeland J C, Guiot J (1990) Temperature and rainfall estimates for the past 40,000 years in equatorial Africa. Nature 346:347–349

    Article  Google Scholar 

  • Burga CA (1991) Vegetation history and paleoclimatology of the middle Holocene-pollen analysis of Alpine peat bog sediments, covered formerly by the Rutor Glacier, 2510 m Aosta Valley, Italy. Global Ecol Biogeogr 1:143–150

    Article  Google Scholar 

  • Cheddadi R, Yu G, Guiot J, Harrison SP, Prentice IC (1997) The climate of Europe 6000 ago. Clim Dyn 13:1–9

    Article  Google Scholar 

  • COHMAP (1988) Climatic changes of the last 18,000 years: Observations and Model Simulations. Science 241:1043–1052

    Article  Google Scholar 

  • Cowling SA (1999) Simulated effects of low atmospheric CO2 on structure and compaosition of North American vegetation at the Last Glacial Maximum. Global Ecol Biogeogr 8:81–93

    Article  Google Scholar 

  • Cowling SA, Field CB (2003) Environmental control of leaf area production: implications for vegetation and land-surface modeling. Global Biogeochem Cycl 17(1):1007, doi:10.1029/2002GB001915

    Article  Google Scholar 

  • Cowling SA, Sykes M (1999) Physiological significance of low atmospheric CO2 for plant-climate interactions. Q Res 52:237–242

    Article  Google Scholar 

  • Davis BAS, Brewer S, Stevenson AC, Guiot J, Data Contributors (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Q Sci Rev 22:1701–1716

    Article  Google Scholar 

  • Elenga H, Peyron O, Bonnefille R, Jolly D, Cheddadi R, Guiot J, Andrieu V, Bottema S, Buchet G, de Beaulieu JL, Hamilton AC, Maley J, Marchant R, Perez-Obiol R, Reille M, Riollet G, Scott L, Straka H, Taylor D, Van Campo E, Vincens A, Laarif F, Jonson H (2000) Pollen-based biome reconstructions for southern Europe and Africa 18,000 yr BP. J Biogeogr 27:621–634

    Article  Google Scholar 

  • EPICA community members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Article  Google Scholar 

  • Fahmy T (1997) Modélisation de la qualité bactériologique de l’eau potable et optimization des procedures de contrôle. Doctorat, ENGREF, Paris, p 224

  • Farquhar GD (1997) Carbon dioxide and vegetation. Science 278:1411

    Article  Google Scholar 

  • Farrera I, Harrison SP, Prentice IC, Ramstein G, Guiot J, Bartlein PJ, Bonnefille R, Bush M, Cramer W, von Grafenstein U, Holmgren K, Hooghiemstra H, Hope G, Jolly D, Lauritzen SE, Ono Y, Point S, Stute M, Yu G (1999) Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry. Clim Dyn 15:823–856

    Article  Google Scholar 

  • Food and Agriculture Organization (FAO) (1995) Soil map of the world 1:5,000,000. U.N. Educ., Sci., and Cult. Organ., Paries

  • Gelman A, Carlin JB, Stein HS, Rubin DB (1995) Bayesian data analysis. Chapman and Hall, New York

  • Guiot J, Cheddadi R, Prentice IC, Jolly D (1996) A method of biome and land surface mapping from pollen data: application to Europe 6000 years ago. Palaeoclimates: Data Model 1:311–324

    Google Scholar 

  • Guiot J, Harrison SP, Prentice IC (1993) Reconstruction of Holocene precipitation patterns in Europe using pollen and lake-level data. Quat Res 40:139–149

    Article  Google Scholar 

  • Guiot J, Torre F, Cheddadi R, Peyron O, Tarasov P, Jolly D, Kaplan JO (1999) The climate of the Mediterranean Basin and of Eurasia of the last glacial maximum as reconstructed by inverse vegetation modelling and pollen data. Ecol Medit 25:193–204

    Google Scholar 

  • Guiot J, Torre F, Jolly D, Peyron O, Boreux JJ, Cheddadi R (2000) Inverse vegetation modeling by Monte Carlo sampling to reconstruct palaeoclimate under changed precipitation seasonality and CO2 conditions: application to glacial climate in Mediterranean region. Ecol Model 127:119–140

    Article  Google Scholar 

  • Haas JN, Rischoz I, Tinner W, Wick L (1998) Synchronous Holocene climate oscillations recorded on the Swiss Plateau and at the timberline in the Alps. Holocene 8:301–309

    Article  Google Scholar 

  • Harrison SP, Prentice CI (2003) Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modeling and palaeoclimate simulations. Global Change Biol 9:983–1004

    Article  Google Scholar 

  • Heaton THE, Talma AS, Vogel JC (1986) Dissolved gas paleotemperature and 18O varariations derived from groundwater near Uitenhage, South Africa. Q Res 25:79–88

    Article  Google Scholar 

  • Hoelzmann PD, Jolly D, Harrison SP, Laarif F, Bonnefille R, Pachur HJ (1998) Mid-Holocene land-surface conditions in northern Africa and the Arabian peninsula: a data set for the analysis of biogeophysical feedback in the climate system. Global Biogeochem Cycl 12:35–52

    Article  Google Scholar 

  • Hoelzmann P, Keding B, Berke H, Kröpelin S, Kruse HJ (2001) Environmental change and archaeology: lake evolution and human occupation in the eastern Sahara during the Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 169:193–217

    Article  Google Scholar 

  • Hostetler SW, Clark PU (2000) Tropical climate at the last glacial maximum inferred from glacier mass-balance modeling. Science 290:1747–1750

    Article  Google Scholar 

  • Huntley B, Prentice IC (1988) July temperatures in Europe from pollen data, 6000 years before present. Science 241:687–690

    Article  Google Scholar 

  • Jackson ST, Williams JW (2004) Modern analogs in quaternary paleoecology- Here Today, Gone Yesterday, Gone Tomorrow? Ann Rev Earth Plan Sci 32:495–537

    Article  Google Scholar 

  • Jolly D, Harrison S P, Damnai B, Bonnefille R (1998a) Simulated climate and biomes of Africa during the late quaternary: comparison with pollen and lake-status data. Q Sci Rev 17:629–657

    Article  Google Scholar 

  • Jolly D, Haxeltine A (1997) Effect of low glacial atmospheric CO2 on tropical African montane vegetation. Science 276:786–788

    Article  Google Scholar 

  • Jolly D, Prentice I C, Bonnefille R, Ballouche A, Bengo M, Brenac P, Buchet G, Bureny D, Cazet JP, Cheddadi R, Edorh T, Elenga H, Elmoutaki S, Guiot J, Laarif F, Lamb H, Lezine AM, Maley J, Mbenza M, Peyron O, Reille M, Reynaud-Farrera I, Riollet G, Ritche JC, Roche E, Scott L, Ssemmanda I, Straka H, Umer M, Campo EV, Vilimumbalo S, Vincens A, Waller M (1998b) Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian Peninsula at 0 and 6 ka. J Biogeogr 25:1007–1028

    Article  Google Scholar 

  • Jost A, Lunt D, Kageyama M, Abe-Ouchi A, Pryron O, Valdes PJ, Ramstein G (2005) High-resolution simulations of the last glacial maximum climate over Europe: a solution to discrepancies with continental palaeoclimatic reconstructions? Clim Dyn 24:577–590

    Article  Google Scholar 

  • Joussaume S, Taylor KE (2000) The paleoclimate modeling intercomparsion project. In: Braconnot P (ed) Paleoclimate modeling intercomparsion project (PMIP). In: Proceedings of 3rd PMIP workshop, vol WCRP-111, WMO/TD-no.1007, Canada, 4–8 October 1999, pp 9–24

  • Joussaume S, Tayler KE, Braconnot P, Mitchell JFB, Kutzbach JE, Harrison SP, Prentice IC, Broccoli AJ, Abe-Ouchi A, Bartlein PJ, Bonfils C, Dong B, Guiot J, Herterich K, Hewitt CD, Jolly D, Kim JW, Kislov A, Kitoh A, Loutre MF, Masson V, McAvaney B, McFarlane N, de Noblet N, Peltier WR, Peterschmitt JY, Pollard D, Rind D, Royer JF, Schlesinger ME, Syktus J, Thompson S, Valdes P, Vettorett G, Webb RS, Wyputta U (1999) Monsoon changes for 6000 years ago: results of 18 simulations from the paleoclimate modeling intercomparsion project (PMIP). Geophys Res Lett 26:859–862

    Article  Google Scholar 

  • Kaplan JO (2001) Geophysical applications of vegetation modeling. PhD Thesis, Lund University, Lund

  • Kohfeld KE, Harrison SP (2000) How well can we simulate past climate? Evaluating the models using global palaeoenvironmental datasets. Q Sci Rev 19:321–346

    Article  Google Scholar 

  • Kucera M, Weinelt M, Kiefer T, Pflaumann U, Hayes A, Weinelt M, Chen MT, Mix AC, Barrows TT, Cortijo E, Duprat J, Juggins S, Waelbroec C (2005) Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Q Sci Rev 24:951–998

    Article  Google Scholar 

  • Leemans R, Cramer W (1991) The IIASA Climate Database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid. RR-91–81, International Institute of Applied Systems Analysis, Laxenburg

  • Liu Z, Harrison SP, Kutzbach JE, Otto-Bliesner B (2004) Global monsoons in the mid-Holocene and oceanic feedback. Clim Dyn 22:157–182

    Article  Google Scholar 

  • Mark BG, Harrison SP, Spessa A, New M, Evans DJA, Helmens KF (2005) Tropical snowline changes at the last glacial maximum: a global assessment. Q Int 138–139:168–201

    Article  Google Scholar 

  • Masson V, Cheddadi R, Braconnot P, Joussaume S, Texier D, PMIP participants (1999) Mid-Holocene climate in Europe: what can we infer from PMIP model-data comparisons. Clim Dyn 15:163–182

    Article  Google Scholar 

  • Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solutions to inverse problems. J Geophys Res 100(B7):12431–12447

    Article  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, Angelis PD, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is considered across a broad range of productivity. PNAS 102:18052–18056

    Article  Google Scholar 

  • Pachur HJ, Hoelzmann P (1991) Paleoclimatic implications of late quaternary lacustrine sediments in Western Nubia, Sudan. Q Res 36:257–276

    Article  Google Scholar 

  • Peltier WR (1994) Ice age paleotopography. Science 265:195–201

    Article  Google Scholar 

  • Peterson G M, Webb III T, Kutzbach J E, Hammen T, Wijmstra TA, Street FA (1979) The continental record of environmental conditions at 18,000 BP: an initial evaluation. Q Res 49:183–196

    Google Scholar 

  • Petit-Maire N, Riser J (1988) Le Sahara à l’Holocène: Mali. C.C.G.M., Paris., Institute Géographique National, 1 carte 1/100000

  • Peyron O, Jolly D, Bonnefille R, Vincens A (2000) Climate of East Africa 6000 14C yr B.P. as inferred from pollen data. Quat Res 54:90–101

    Article  Google Scholar 

  • Peyron O, Bégeot C, Brewer S, Heiri O, Magny M, Millet L, Ruffaldi P, Van Campo E, Yu G (2005) Late-Glacial climatic changes in Eastern France (Lake Lautrey) from pollen, lake-levels, and chironomids. Q Res 64:197–211

    Article  Google Scholar 

  • Peyron O, Guiot J, Cheddadi R, Tarasov P, Reille M, Beaulieu JL, Bottema S, Andrieu V (1998) Climatic reconstruction in Europe for 18,000 yr B.P. from pollen data. Q Res 49:183–196

    Article  Google Scholar 

  • Pinot S, Ramstein G, Harrison SP, Prentice IC, Guiot J, Stute M, Joussaume S (1999) Tropical paleoclimates at the Last Glacial Maximum: comparison of Paleoclimate Modeling Intercomparsion Project (PMIP) simulations and paleodata. Clim Dyn 15:857–874

    Article  Google Scholar 

  • Polley HW, Johnson HB, Marino B, Mayeux HS (1993) Increase in C3 plant water-use efficiency and biomass over Glacial to present CO2 concentrations. Nature 361:61–64

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Prentice IC, Guiot J, Huntley B, Jolly D, Cheddadi R (1996) Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim Dyn 12:185–194

    Article  Google Scholar 

  • Prentice IC, Harrison SP, Jolly D, Guiot J (1998) The climate and biomes of Europe at 6000 yr BP: comparison of model simulations and pollen-based reconstructions. Q Sci Rev 17:659–668

    Article  Google Scholar 

  • Prentice IC, Jolly D (2000) BIOME 6000 P, mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J Biogeogr 27(3):507–519

    Article  Google Scholar 

  • Riser J (1989) Modèles quaternaires et bilans d’érosion dans deux plaines du basin de Taoudenni. Abstracts of IPCG 252, Jerba, Tunisia

  • Rosell-Mele A, Bard E, Emeis KC, Grieger B, Hewitt C, Muller PJ, Schneider RR (2004) Sea surface temperature anomalies in the oceans at the LGM estimated from the alkenone-Uk 37 index: comparison with GCMs. Geophys Res Lett 31:L03208, doi:10.1029/2003GL018151

  • Sawada M, Viau AE, Vettoretti G, Peltier WR, Gajewski K (2004) Comparison of Northern-American pollen-based temperature and global lake-status with CCCma AGCM2 output at 6 ka. Q Sci Rev 23:225–244

    Article  Google Scholar 

  • Spangler WML, Jenne RL (1988) World monthly surface station climatology. NCAR, Scientific computing division, report 6p + CDROM

  • Street-Perrott FA, Huang Y S, Perrott A, Eglinton G, Barker P, Khelifa LB, Harkness DD, Olago DO (1997) Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278:1422–1426

    Article  Google Scholar 

  • Stute M, Talma AS (1997) Glacial temperatures and moistiure transport regimes reconstructed from noble gases and 18O, Stampriet aquifer, Namibia. In: Isotope techniques in studing past and current environmental changes in the hydroaphere

  • Talma AS, Vogel JC (1992) Late Quarternary paleotemperatures derived from a speleothem from Congo caves, Cape Provence, South Africa. Q Res 37:203–213

    Article  Google Scholar 

  • Tarasov PE, Guiot J, Cheddadi R, Andreev AA, Bezusko LG, Blyakharchuk TA, Dorofeyuk NI, Filimonova LV, Volkova VS, Zernitskaya VP (1999a) Climate in northern Eurasia 6000 years ago reconstructed from pollen data. Earth Planet Sci Lett 171:635–645

    Article  Google Scholar 

  • Tarasov PE, Peyron O, Guiot J, Brewer S, Volkova VS, Bezusko LG, Dorofeyuk NI, Kvavadze EV, Osipova IM, Panova NK (1999b) Last Glacial Maximum climate of the former Soviet Union and Mongolia reconstructed from pollen and plant macrofossil data. Clim Dyn 15:227–240

    Article  Google Scholar 

  • Tarasov PE, Volkova VS, Webb T III, Guiot J, Andreev AA, Bezusko LG, Bezusko TV, Bykova GV, Dorofeyuk NI, Kvavada EV, Osipova IM, Panova NK, Sevastyanov DV (2000) Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J Biogeogr 27:609–620

    Article  Google Scholar 

  • Tarasov PE, Webb TIII, Andreev A A, Andreev AA, Afanaseva NB, Berezina NA, Bezusko LG, Blyakharchuk TA, Bolikhovskaya NS, Cheddadi R, Chernavskaya MM, Chernova GM, Dorofeyuk NI, Dirksen VG, Elina GA, Filimonova LV, Glebov FZ, Guiot J, Gunova VS, Harrison SP, Jolly D, Khomutova VI, Kvavadze EV, Osipova IM, Panova NK, Prentice IC, Saarse L, Sevastyanov DV, Volkova VS, Zernitskaya VP (1998) Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J Biogeogr 25:1029–1053

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis IE, Lin PN, Henderson KA, Cole-Dai J, Bolzan JF, Liu KB (1995) Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269:46–50

    Article  Google Scholar 

  • Williams JW, Shuman BN, Webb III T, Bartlein PJ, Leduc PL (2004) Late-quaternary vegetation dynamics in North America: Scaling from taxa to biomes. Ecol Monogr 74:309–334

    Google Scholar 

  • Williams J W, Webb III T, Shurman B N, Bartlein P J (2000) Do low CO2 concentrations affect pollen-based reconstructions of LGM climates? a response to “physiological significance of low atmospheric CO2 for plant–climate interactions” by Cowling and Sykes. Q Res 53:402–404

    Article  Google Scholar 

  • Zoller H, Athanasiadis N, Heitz-Weniger A (1998) Late-glacial and Holocene vegetation and climate change at the Palu glacier, Bernina pass, Grisons canton, Switzerland. Veget Hist Archaeobot 7:241–249

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a European funding in the frame of the EU Environment and Sustainable Development program (project MOTIF, EVK2-CT-2002-00153), NSFC Foundation (no. 40302021), NSFC key project (no. 40231001), NSFC for Innovation Group project (no. 40121303), the National Basic Research Program of China (no. 2004CB720203), as well as a grant of the French Ministry of Research to the first author. We are grateful to Dr. Odile Peyron (Laboratoire de Chrono-Ecologie, Université de Franche-Comté, France) for her contribution to the calibration data by PFT method based on an improved modern pollen dataset. Thanks are also extended to J-C Duplessy (editor) and the two anonymous reviewers for their constructive suggestions and comments on the previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Guiot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Guiot, J., Brewer, S. et al. Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Clim Dyn 29, 211–229 (2007). https://doi.org/10.1007/s00382-007-0231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0231-3

Keywords

Navigation