Skip to main content

Advertisement

Log in

Posterior fossa tumors in children: developmental anatomy and diagnostic imaging

  • Special Annual Issue
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Modern understanding of the relation between the mutated cancer stem cell and its site of origin and of its interaction with the tissue environment is enhancing the importance of developmental anatomy in the diagnostic assessment of posterior fossa tumors in children. The aim of this review is to show how MR imaging can improve on the exact identification of the tumors in the brainstem and in the vicinity of the fourth ventricle in children, using both structural imaging data and a precise topographical assessment guided by the developmental anatomy.

Results

The development of the hindbrain results from complex processes of brainstem segmentation, ventro-dorsal patterning, multiple germinative zones, and diverse migration pathways of the neural progenitors. Depending on their origin in the brainstem, gliomas may be infiltrative or not, as well as overwhelmingly malignant (pons), or mostly benign (cervicomedullary, medullo-pontine tegmental, gliomas of the cerebellar peduncles). In the vicinity of the fourth ventricles, the prognosis of the medulloblastomas (MB) correlates the molecular subtyping as well as the site of origin: WNT MB develop from the Wnt-expressing lower rhombic lip and have a good prognosis; SHH MB develop from the Shh-modulated cerebellar cortex with an intermediate prognosis (dependent on age); recurrences are local mostly. The poor prognosis group 3 MB is radiologically heterogeneous: some tumors present classic features but are juxtaventricular (rather than intraventricular); others have highly malignant features with a small principal tumor and an early dissemination. Group 4 MB has classic features, but characteristically usually does not enhance; dissemination is common. Although there is as yet no clear molecular subgrouping of the ependymomas, their sites of origin and their development can be clearly categorized, as most develop in an exophytic way from the ventricular surface of the medulla in clearly specific locations: the obex region with expansion in the cistern magna, or the lateral recess region with expansion in the CPA and prepontine cisterns (cerebellar ependymomas, and still more intra-brainstem ependymomas are rare). Finally, almost all cerebellar gliomas are pilocytic astrocytomas.

Conclusions

A developmental and anatomic approach to the posterior fossa tumors in children (together with diffusion imaging data) provides a reliable pre-surgical identification of the tumor and of its aggressiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Boydston WR, Sanford RA, Muhlbauer MS, et al. (1991-1992) Glioma of the tectum and periaqueductal region of the mesencephalon. Pediatr Neurosurg 17:234–238

  2. Broniscer A, Laningham FH, Kocak M, et al. (2006) Intratumoral hemorrhage among children with newly diagnosed, diffuse brainstem glioma. Cancer 106:1364–1371

    Article  PubMed  Google Scholar 

  3. Cambronero F, Puelles L (2000) Posterocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545

    Article  CAS  PubMed  Google Scholar 

  4. Conway AE, Reddick WE, Yuan Y, et al. (2014) “Occult” post-contrast signal enhancement in pediatric diffuse intrinsic pontine glioma is the MRI marker of angiogenesis? Neuroradiology 56(5):405–412

    Article  PubMed Central  PubMed  Google Scholar 

  5. Curless RC, Bowen BC, Pattany PM, et al. (2002) Magnetic resonance spectroscopy in childhood brainstem tumors. Pediatr Neurol 26:374–378

    Article  PubMed  Google Scholar 

  6. Dağlioğlu E, Çataltepe O, Akalan N (2003) Tectal gliomas in children: the implications for natural history and management strategy. Pediatr Neurosurg 38:223–231

    Article  PubMed  Google Scholar 

  7. Epstein F, Wisoff J (1987) Intraaxial tumors of the cervicomedullary junction. J Neurosurg 67:483–487

    Article  CAS  PubMed  Google Scholar 

  8. Epstein FJ, Farmer JP (1993) Brain-stem glioma growth patterns. J Neurosurg 78:408–412

    Article  CAS  PubMed  Google Scholar 

  9. Gibson P, Tong Y, Robinson G, et al. (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468:1095–1099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gilbertson RJ, Gutmann DH (2007) Tumorigenesis in the brain: location, location, location. Cancer Res 67(12):5579–5582

    Article  CAS  PubMed  Google Scholar 

  11. Godfraind C, Kaczmarska J, Kocak M, et al. (2012) Distinct disease-risk groups in pediatric supratentorial and posterior fossa ependymomas. Acta Neuropathol 124(2):247–257

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ikezaki K, Matsushima T, Inoue T, et al. (1993) Correlation of microanatomical localization with postoperative survival in posterior fossa ependymomas. Neurosurgery 32(1):38–44

    Article  CAS  PubMed  Google Scholar 

  13. Jandial R, U H, Levy ML, Snyder EY (2008) Brain tumor stem cells and the tumor microenvironment. Neurosurg Focus 24(3-4):E27

    Article  PubMed  Google Scholar 

  14. Konno H, Yamamoto T, Iwasaki Y, et al. (1985) A case of quadrigeminal hamartoma. Acta Neuropathol 68:155–159

    Article  CAS  PubMed  Google Scholar 

  15. Kool M, Korshunov A, Remke M, et al. (2012) Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data on WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123:473–484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Koral K, Mathis D, Gimi B, et al. (2013) Common pediatric cerebellar tumors: correlation between cell density and apparent diffusion coefficient metrics. Radiology 268(2):532–537

    Article  PubMed  Google Scholar 

  17. Krieger MD, Blüml S, McComb JG (2003) Magnetic resonance spectroscopy of atypical diffuse pontine masses. Neurosurg Focus 15(1):E5

    Article  PubMed  Google Scholar 

  18. Laprie A, Pirzkall A, Haas-Kogan DA, et al. (2005) Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem glioma treated with radiotherapy. Int J Radiat Oncol Biol Phys 62:20–31

    Article  PubMed  Google Scholar 

  19. Löbel U, Sedlacik J, Sabin ND, et al. (2010) Three-dimensional susceptibility-weighted imaging and two-dimensional T2*-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma. Neuroradiology 52:1167–1177

    Article  PubMed Central  PubMed  Google Scholar 

  20. Löbel U, Sedlacik J, Reddick WE, et al. (2010) Quantitative diffusion-weighted and dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging analysis of T2 hypointense lesion components in pediatric diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol 32(2):315–322

    Article  PubMed Central  PubMed  Google Scholar 

  21. Louis DN, Ohgaki H, Wiestler OD, et al. (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed Central  PubMed  Google Scholar 

  22. Mack SC, Witt H, Piro RM, et al. (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506:445–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Marcorelles P, Fallet-Bianco C, Oury JF, et al. (2005) Fetal aqueductal glioneuronal hamartoma: a clinicopathological and physiopathological study of three cases. Clin Neuropathol 24:155–162

    CAS  PubMed  Google Scholar 

  24. Martinez S, Audreu A, Mecklenburg N, Echevarria D (2013) Cellular and molecular basis of cerebellar development. Front Neuroanat 7:18

    Article  PubMed Central  PubMed  Google Scholar 

  25. Nakamura H, Watanabe Y (2005) Isthmus organizer and regionalization of the mesencephalon and metencephalon. Int J Dev Biol 49:231–235

    Article  CAS  PubMed  Google Scholar 

  26. Northcott PA, Korshunov A, Witt H, et al. (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29(11):1408–1414

    Article  PubMed  Google Scholar 

  27. Northcott PA, Korshunov A, Pfister SM, Taylor MD (2012) The clinical implications of medulloblastoma subgroups. Nat Rev Neurol 8:340–351

    Article  CAS  PubMed  Google Scholar 

  28. Panigrahy A, Nelson Jr MD, Finlay JL, et al. (2008) Metabolism of diffuse intrinsic brainstem gliomas in children. Neuro-Oncology 10(1):32–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Panigrahy A, Nelson Jr MD, Blüml S (2010) Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol 40(1):3–30

    Article  PubMed  Google Scholar 

  30. Pajtler K, Witt H, Sill M et al. The ependymoma classification. Cancer Cell 2015 (accepted).

  31. Perreault S, Ramaswamy V, Achrol AS, et al. (2014) MRI surrogates for molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 35:1263–1269

    Article  CAS  PubMed  Google Scholar 

  32. Raghunathan A, Wani K, Armstrong TS, et al. (2013) Histological predictors of outcome in ependymoma are dependent on anatomic site within the central nervous system. Brain Pathol 23:584–594

    Article  PubMed  Google Scholar 

  33. Ramaswamy V, Remke M, Bouffet E, et al. (2013) Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol 14(12):1200–1207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ramaswamy V, Remke M, Shih D, et al. (2014) Duration of the pre-diagnostic interval in medulloblastoma is subgroup dependent. Pediatr Blood Cancer 61(7):1190–1194

    Article  PubMed  Google Scholar 

  35. Ramaswamy V, Remke M, Adamski J et al. Medulloblastoma subgroup-specific outcomes in irradiated children: who are the true high-risk patients? Neuro-Oncology 2015. [Epub ahead of print]

  36. Rauscher A, Sedlacik J, Barth M, et al. (2005) Noninvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility-weighted magnetic resonance imaging. Magn Reson Med 54:87–95

    Article  PubMed  Google Scholar 

  37. Robertson PL, Murazko KM, Brunberg JA, et al. (1995) Pediatric midbrain tumors: a benign subgroup of brainstem gliomas. Pediatr Neurosurg 22:65–73

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez Gutierrez D, Awwad A, Meijer L, et al. (2014) Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. AJNR Am J Neuroradiol 35:1009–1015

    Article  CAS  PubMed  Google Scholar 

  39. Roussel MF, Hatten ME (2011) Cerebellum: development and medulloblastoma. Curr Top Dev Biol 94:235–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Sanford RA, Bebin J, Smith WR (1982) Pencil glioma of the aqueduct of Sylvius. J Neurosurg 57:690–696

    Article  CAS  PubMed  Google Scholar 

  41. Sehgal V, Delproposto Z, Haacke EM, et al. (2005) Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 22:439–450

    Article  PubMed  Google Scholar 

  42. Sehgal V, Delproposto Z, Haddar D, et al. (2006) Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 24:41–51

    Article  PubMed  Google Scholar 

  43. Sgaier SK, Millet S, Villanueva MP, et al. (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45(1):27–40

    CAS  PubMed  Google Scholar 

  44. Sun B, Wang CC, Wang G (1999) MRI characteristics of midbrain tumors. Neuroradiology 41:158–162

    Article  CAS  PubMed  Google Scholar 

  45. Taylor MD, Poppleton H, Fuller C, et al. (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  CAS  PubMed  Google Scholar 

  46. Taylor MD, Northcott PA, Korshunov A, et al. (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. ten Donkelaar HJ, Lammens M, Cruysberg JRM, Cremers CWJR (2006) Development and developmental disorders of the cranial nerves. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical Neuroembryology. Springer-Verlag, Berlin Heidelberg, pp. 274–279

    Chapter  Google Scholar 

  48. Ternier J, Wray A, Puget S, et al. (2006) Tectal plate lesions in children. J Neurosurg 104(6 Suppl Pediatrics):369–373

    PubMed  Google Scholar 

  49. Tihan T, Zhou T, Holmes E, et al. (2008) The prognostic value of histological grading of posterior fossa ependymomas in children: a children’s oncology group study and a review of prognostic factors. Mod Pathol 21:165–177

    PubMed  Google Scholar 

  50. Tümpel S, Wiedemann KR (2009) Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 88:103–137

    Article  PubMed  Google Scholar 

  51. U-King-Im JM, Taylor MD, Raybaud C (2010) Posterior fossa ependymomas: new radiological classification with surgical correlation. Childs Nerv Syst 26:1765–1772

    Article  PubMed  Google Scholar 

  52. Vandertop WP, Hoffman HJ, Drake JM, et al. (1992) Focal midbrain tumors in children. Neurosurgery 31:186–194

    Article  CAS  PubMed  Google Scholar 

  53. Witt H, Mack SC, Ryzhova M, et al. (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Witt H, Korshunov A, Pfister SM, Milde T (2012) Molecular approaches to ependymoma: the next step(s). Curr Opin Neurol 25(6):745–750

    Article  PubMed  Google Scholar 

  55. Wullimann MF, Mueller T, Distel M, et al. (2011) The long adventurous journey of rhombic lip cells in jawed vertebrate: a comparative development analysis. Front Neuroanat 5:27

    Article  PubMed Central  PubMed  Google Scholar 

  56. Xu Q, Wilkinson DG (2013) Boundary formation in the development of the vertebrate hindbrain. WIREs Dev Biol 2:735–745

    Article  CAS  Google Scholar 

  57. Yeom KW, Mobley BC, Lober MR, et al. (2013) Distinctive MRI features of pediatric medulloblastoma subtypes. AJNR Am J Neuroradiol 200:895–903

    Google Scholar 

  58. Zhukova N, Ramaswamy V, Remke M, et al. (2013) Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. Clin Oncol 31(23):2927–2935

    Article  Google Scholar 

Download references

Conflict of interest

We have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Raybaud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raybaud, C., Ramaswamy, V., Taylor, M.D. et al. Posterior fossa tumors in children: developmental anatomy and diagnostic imaging. Childs Nerv Syst 31, 1661–1676 (2015). https://doi.org/10.1007/s00381-015-2834-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-015-2834-z

Keywords

Navigation