Skip to main content
Log in

Dynapenia is an independent predictor of cardio-cerebrovascular events in patients undergoing hemodialysis

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The number of patients on maintenance hemodialysis (HD) diagnosed with sarcopenia has been increasing through as individuals age. Recent focus is on the condition termed, “dynapenia,” which reduces only muscle function, as opposed to sarcopenia, which reduces both muscle mass and function. However, the association between dynapenia and cardio-cerebrovascular (CV) events in patients undergoing HD is largely unknown. The purpose of this study was to evaluate whether sarcopenia and dynapenia are associated with the onset of CV events in patients undergoing HD. We retrospectively analyzed 342 patients undergoing HD between January and December 2018. Patients who underwent HD thrice per week for > 3 months were included in the analysis. We adopted the Asian Working Group on Sarcopenia criteria for the diagnosis of sarcopenia and dynapenia. In this study, 244 patients undergoing HD were enrolled. The prevalence of sarcopenia was 38.5%. Sarcopenia was determined to be an independent contributor to CV events in patients undergoing HD. To investigate the clinical relevance of dynapenia in patients with HD, patients without sarcopenia were further divided into dynapenia and non-dynapenia groups. Among 150 patients without sarcopenia, 46 were diagnosed with dynapenia. In the Kaplan–Meier analysis, the rate of CV events was significantly different among the three groups in a stratified manner, with the highest rate in the sarcopenia group and the lowest rate in the non-sarco-dynapenia group. Both patients with sarcopenia and dynapenia had significantly increased CV events compared to those with non-sarco-dynapenia (HR 8.00; 95% CI 2.73–34.1; p < 0.0001 vs. HR 4.85; 95% CI 1.28–23.0; p < 0.02). Both sarcopenia and dynapenia resulted in significantly higher CV events than non-sarco-dynapenia in patients undergoing HD. Therefore, clinicians should evaluate muscle function in addition to muscle quantity to estimate CV events in patients undergoing HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HD:

Hemodialysis

AWGS:

The Asian Working Group on Sarcopenia

CV:

Cardiovascular and cerebrovascular

DEXA:

Dual-energy X-ray absorptiometry

SMI:

Skeletal mass index

MI:

Myocardial infarction

References

  1. Cruz-Jentoft AJ, Sayer AA (2019) Sarcopenia. The Lancet 393(10191):2636–2646. https://doi.org/10.1016/s0140-6736(19)31138-9

    Article  Google Scholar 

  2. Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, Peng LN, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita M, Arai H (2020) Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc 21(3):300–307. https://doi.org/10.1016/j.jamda.2019.12.012 (e302)

    Article  PubMed  Google Scholar 

  3. Kramer A (2020) An overview of the beneficial effects of exercise on health and performance. Adv Exp Med Biol 1228:3–22. https://doi.org/10.1007/978-981-15-1792-1_1

    Article  CAS  PubMed  Google Scholar 

  4. Visser M, Schaap LA (2011) Consequences of sarcopenia. Clin Geriatr Med 27(3):387–399. https://doi.org/10.1016/j.cger.2011.03.006

    Article  PubMed  Google Scholar 

  5. Yin J, Lu X, Qian Z, Xu W, Zhou X (2019) New insights into the pathogenesis and treatment of sarcopenia in chronic heart failure. Theranostics 9(14):4019–4029. https://doi.org/10.7150/thno.33000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clark BC, Manini TM (2012) What is dynapenia? Nutrition 28(5):495–503. https://doi.org/10.1016/j.nut.2011.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  7. Manini TM, Clark BC (2012) Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci 67(1):28–40. https://doi.org/10.1093/gerona/glr010

    Article  PubMed  Google Scholar 

  8. Mori H, Kuroda A, Matsuhisa M (2019) Clinical impact of sarcopenia and dynapenia on diabetes. Diabetol Int 10(3):183–187. https://doi.org/10.1007/s13340-019-00400-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Clark BC, Manini TM (2008) Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci 63(8):829–834. https://doi.org/10.1093/gerona/63.8.829

    Article  PubMed  Google Scholar 

  10. Yamada M, Kimura Y, Ishiyama D, Nishio N, Abe Y, Kakehi T, Fujimoto J, Tanaka T, Ohji S, Otobe Y, Koyama S, Okajima Y, Arai H (2017) Differential characteristics of skeletal muscle in community-dwelling older adults. J Am Med Dir Assoc 18(9):807. https://doi.org/10.1016/j.jamda.2017.05.011 (e809-807 e816)

    Article  PubMed  Google Scholar 

  11. Artero EG, Lee DC, Ruiz JR, Sui X, Ortega FB, Church TS, Lavie CJ, Castillo MJ, Blair SN (2011) A prospective study of muscular strength and all-cause mortality in men with hypertension. J Am Coll Cardiol 57(18):1831–1837. https://doi.org/10.1016/j.jacc.2010.12.025

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rantanen T, Guralnik JM, Foley D, Masaki K, Leveille S, Curb JD, White L (1999) Midlife hand grip strength as a predictor of old age disability. JAMA 281(6):558–560. https://doi.org/10.1001/jama.281.6.558

    Article  CAS  PubMed  Google Scholar 

  13. Takata Y, Ansai T, Soh I, Awano S, Yoshitake Y, Kimura Y, Nakamichi I, Goto K, Fujisawa R, Sonoki K, Yoshida A, Toyoshima K, Nishihara T (2012) Physical fitness and 6.5-year mortality in an 85-year-old community-dwelling population. Arch Gerontol Geriatr 54(1):28–33. https://doi.org/10.1016/j.archger.2011.04.014

    Article  PubMed  Google Scholar 

  14. Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, Simonsick EM, Harris TB (2005) Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci 60(3):324–333. https://doi.org/10.1093/gerona/60.3.324

    Article  PubMed  Google Scholar 

  15. Eckardt KU, Gillespie IA, Kronenberg F, Richards S, Stenvinkel P, Anker SD, Wheeler DC, de Francisco AL, Marcelli D, Froissart M, Floege J, Committee AROS (2015) High cardiovascular event rates occur within the first weeks of starting hemodialysis. Kidney Int 88(5):1117–1125. https://doi.org/10.1038/ki.2015.117

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mavrakanas TA, Charytan DM (2016) Cardiovascular complications in chronic dialysis patients. Curr Opin Nephrol Hypertens 25(6):536–544. https://doi.org/10.1097/MNH.0000000000000280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Usui T, Hanafusa N, Yasunaga H, Nangaku M (2019) Association of dialysis with in-hospital disability progression and mortality in community-onset stroke. Nephrology (Carlton) 24(7):737–743. https://doi.org/10.1111/nep.13242

    Article  Google Scholar 

  18. Wheeler DC, London GM, Parfrey PS, Block GA, Correa-Rotter R, Dehmel B, Drueke TB, Floege J, Kubo Y, Mahaffey KW, Goodman WG, Moe SM, Trotman ML, Abdalla S, Chertow GM, Herzog CA, Investigators EVOCHTtLCET (2014) Effects of cinacalcet on atherosclerotic and nonatherosclerotic cardiovascular events in patients receiving hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. J Am Heart Assoc 3(6):e001363. https://doi.org/10.1161/JAHA.114.001363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lai S, Muscaritoli M, Andreozzi P, Sgreccia A, De Leo S, Mazzaferro S, Mitterhofer AP, Pasquali M, Protopapa P, Spagnoli A, Amabile MI, Molfino A (2019) Sarcopenia and cardiovascular risk indices in patients with chronic kidney disease on conservative and replacement therapy. Nutrition 62:108–114. https://doi.org/10.1016/j.nut.2018.12.005

    Article  PubMed  Google Scholar 

  20. Mori K, Nishide K, Okuno S, Shoji T, Emoto M, Tsuda A, Nakatani S, Imanishi Y, Ishimura E, Yamakawa T, Shoji S, Inaba M (2019) Impact of diabetes on sarcopenia and mortality in patients undergoing hemodialysis. BMC Nephrol 20(1):105. https://doi.org/10.1186/s12882-019-1271-8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Anderton N, Giri A, Wei G, Marcus RL, Chen X, Bjordahl T, Habib A, Herrera J, Beddhu S (2015) Sedentary behavior in individuals with diabetic chronic kidney disease and maintenance hemodialysis. J Ren Nutr 25(4):364–370. https://doi.org/10.1053/j.jrn.2015.01.018

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gomes EP, Reboredo MM, Carvalho EV, Teixeira DR, Carvalho LF, Filho GF, de Oliveira JC, Sanders-Pinheiro H, Chebli JM, de Paula RB, Pinheiro Bdo V (2015) Physical activity in hemodialysis patients measured by triaxial accelerometer. Biomed Res Int 2015:645645. https://doi.org/10.1155/2015/645645

    Article  PubMed  PubMed Central  Google Scholar 

  23. More KM, Blanchard C, Theou O, Cranston A, Vinson AJ, Dipchand C, Kiberd B, Tennankore KK (2019) A location-based objective assessment of physical activity and sedentary behavior in ambulatory hemodialysis patients. Can J Kidney Health Dis 6:2054358119872967. https://doi.org/10.1177/2054358119872967

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hishii S, Miyatake N, Nishi H, Katayama A, Ujike K, Koumoto K, Suzuki H, Hashimoto H (2019) Relationship between sedentary behavior and all-cause mortality in Japanese chronic hemodialysis patients: a prospective cohort study. Acta Med Okayama 73(5):419–425. https://doi.org/10.18926/AMO/57372

    Article  PubMed  Google Scholar 

  25. O’Hare AM, Tawney K, Bacchetti P, Johansen KL (2003) Decreased survival among sedentary patients undergoing dialysis: results from the dialysis morbidity and mortality study wave 2. Am J Kidney Dis 41(2):447–454. https://doi.org/10.1053/ajkd.2003.50055

    Article  PubMed  Google Scholar 

  26. Kuki A, Tanaka K, Kushiyama A, Tanaka Y, Motonishi S, Sugano Y, Furuya T, Ozawa T (2019) Association of gait speed and grip strength with risk of cardiovascular events in patients on haemodialysis: a prospective study. BMC Nephrol 20(1):196. https://doi.org/10.1186/s12882-019-1370-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, Boudreau R, Manini TM, Nevitt M, Newman AB, Goodpaster BH, Health A, Body (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90(6):1579–1585. https://doi.org/10.3945/ajcn.2009.28047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Correa-de-Araujo R, Harris-Love MO, Miljkovic I, Fragala MS, Anthony BW, Manini TM (2017) The need for standardized assessment of muscle quality in skeletal muscle function deficit and other aging-related muscle dysfunctions: a symposium report. Front Physiol 8:87. https://doi.org/10.3389/fphys.2017.00087

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61(10):1059–1064. https://doi.org/10.1093/gerona/61.10.1059

    Article  PubMed  Google Scholar 

  30. Moorthi RN, Avin KG (2017) Clinical relevance of sarcopenia in chronic kidney disease. Curr Opin Nephrol Hypertens 26(3):219–228. https://doi.org/10.1097/MNH.0000000000000318

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim JK, Choi SR, Choi MJ, Kim SG, Lee YK, Noh JW, Kim HJ, Song YR (2014) Prevalence of and factors associated with sarcopenia in elderly patients with end-stage renal disease. Clin Nutr 33(1):64–68. https://doi.org/10.1016/j.clnu.2013.04.002

    Article  PubMed  Google Scholar 

  32. Nishi H, Takemura K, Higashihara T, Inagi R (2020) Uremic sarcopenia: clinical evidence and basic experimental approach. Nutrients. https://doi.org/10.3390/nu12061814

    Article  PubMed  PubMed Central  Google Scholar 

  33. Delano MJ, Moldawer LL (2006) The origins of cachexia in acute and chronic inflammatory diseases. Nutr Clin Pract 21(1):68–81. https://doi.org/10.1177/011542650602100168

    Article  PubMed  Google Scholar 

  34. Stenvinkel P, Alvestrand A (2002) Inflammation in end-stage renal disease: sources, consequences, and therapy. Semin Dial 15(5):329–337. https://doi.org/10.1046/j.1525-139x.2002.00083.x

    Article  PubMed  Google Scholar 

  35. Kittiskulnam P, Chertow GM, Carrero JJ, Delgado C, Kaysen GA, Johansen KL (2017) Sarcopenia and its individual criteria are associated, in part, with mortality among patients on hemodialysis. Kidney Int 92(1):238–247. https://doi.org/10.1016/j.kint.2017.01.024

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Izumiya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, H., Izumiya, Y., Hayashi, O. et al. Dynapenia is an independent predictor of cardio-cerebrovascular events in patients undergoing hemodialysis. Heart Vessels 37, 1066–1074 (2022). https://doi.org/10.1007/s00380-021-02006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-021-02006-7

Keywords

Navigation