Skip to main content

Advertisement

Log in

Exogenous midkine administration prevents cardiac remodeling in pacing-induced congestive heart failure of rabbits

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Midkine (MK), a heparin-binding growth factor, has been shown to prevent cardiac remodeling after ischemic injury through its anti-apoptotic effect. Cell apoptosis is central to the pathophysiology of cardiac remodeling in congestive heart failure (CHF) of ischemic as well as non-ischemic origin. We hypothesized that MK exerts the anti-apoptotic cardioprotective effect in CHF of non-ischemic etiology. MK protein or vehicle (normal saline) was subcutaneously administered in tachycardia-induced CHF rabbits (right ventricular pacing, 350 beats/min, 4 weeks). The vehicle-treated rabbits (n = 19, control) demonstrated severe CHF and high mortality rate, whereas MK (n = 16) demonstrated a well-compensated state and a lower mortality rate. In echocardiography, left ventricular (LV) end-diastolic dimension decreased in MK versus control, whereas LV systolic function increased. In histological analysis (picrosirius red staining), MK decreased collagen deposition area compared with control. TUNEL staining showed that MK prevented cell apoptosis and minimized myocyte loss in the CHF rabbit ventricle, associated with activation of PI3-K/Akt signaling, producing a parallel decrease of Bax/Bcl-2 ratio. MK prevented progression of cardiac remodeling in the CHF rabbit, likely by activation of anti-apoptotic signaling. Exogenous MK application might be a novel therapeutic strategy for CHF due to non-ischemic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132(3):359–371

    Article  PubMed  CAS  Google Scholar 

  2. Muramatsu T (2011) Midkine: a promising molecule for drug development to treat diseases of the central nervous system. Curr Pharm Des 17(5):410–423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Horiba M, Kadomatsu K, Yasui K, Lee JK, Takenaka H, Sumida A, Kamiya K, Chen S, Sakuma S, Muramatsu T, Kodama I (2006) Midkine plays a protective role against cardiac ischemia/reperfusion injury through a reduction of apoptotic reaction. Circulation 114(16):1713–1720

    Article  PubMed  CAS  Google Scholar 

  4. Takenaka H, Horiba M, Ishiguro H, Sumida A, Hojo M, Usui A, Akita T, Sakuma S, Ueda Y, Kodama I, Kadomatsu K (2009) Midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction. Am J Physiol Heart Circ Physiol 296(2):H462–H469

    Article  PubMed  CAS  Google Scholar 

  5. Sumida A, Horiba M, Ishiguro H, Takenaka H, Ueda N, Ooboshi H, Opthof T, Kadomatsu K, Kodama I (2010) Midkine gene transfer after myocardial infarction in rats prevents remodelling and ameliorates cardiac dysfunction. Cardiovasc Res 86(1):113–121

    Article  PubMed  CAS  Google Scholar 

  6. Ishiguro H, Horiba M, Takenaka H, Sumida A, Opthof T, Ishiguro YS, Kadomatsu K, Murohara T, Kodama I (2011) A single intracoronary injection of midkine reduces ischemia/reperfusion injury in swine hearts: a novel therapeutic approach for acute coronary syndrome. Front Physiol 2:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335(16):1182–1189

    Article  PubMed  CAS  Google Scholar 

  8. Saraste A, Pulkki K, Kallajoki M, Heikkila P, Laine P, Mattila S, Nieminen MS, Parvinen M, Voipio-Pulkki LM (1999) Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur J Clin Invest 29(5):380–386

    Article  PubMed  CAS  Google Scholar 

  9. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111(10):1497–1504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P (1997) Apoptosis in the failing human heart. N Engl J Med 336(16):1131–1141

    Article  PubMed  CAS  Google Scholar 

  11. Harada M, Tsuji Y, Ishiguro YS, Takanari H, Okuno Y, Inden Y, Honjo H, Lee JK, Murohara T, Sakuma I, Kamiya K, Kodama I (2011) Rate-dependent shortening of action potential duration increases ventricular vulnerability in failing rabbit heart. Am J Physiol Heart Circ Physiol 300(2):H565–H573

    Article  PubMed  CAS  Google Scholar 

  12. Narita H, Chen S, Komori K, Kadomatsu K (2008) Midkine is expressed by infiltrating macrophages in in-stent restenosis in hypercholesterolemic rabbits. J Vasc Surg 47(6):1322–1329

    Article  PubMed  Google Scholar 

  13. Horiba M, Kadomatsu K, Nakamura E, Muramatsu H, Ikematsu S, Sakuma S, Hayashi K, Yuzawa Y, Matsuo S, Kuzuya M, Kaname T, Hirai M, Saito H, Muramatsu T (2000) Neointima formation in a restenosis model is suppressed in Midkine-deficient mice. J Clin Invest 105(4):489–495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Banno H, Takei Y, Muramatsu T, Komori K, Kadomatsu K (2006) Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J Vasc Surg 44(3):633–641

    Article  PubMed  Google Scholar 

  15. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94(4):1621–1628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74(1):86–107

    PubMed  CAS  Google Scholar 

  17. Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara JA, Chapnick S, Reiss K, Olivetti G, Anversa P (1996) Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol 271(3 Pt 2):H1215–H1228

    PubMed  CAS  Google Scholar 

  18. Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, Anversa P (1995) Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 73(6):771–787

    PubMed  CAS  Google Scholar 

  19. Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S (1996) Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 148(1):141–149

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Weckbach LT, Muramatsu T, Walzog B (2011) Midkine in inflammation. Scientific World J 11:2491–2505

    Article  CAS  Google Scholar 

  21. Hobo A, Yuzawa Y, Kosugi T, Kato N, Asai N, Sato W, Maruyama S, Ito Y, Konori H, Ikematsu S, Nishiyama A, Matsuo S, Kadomatsu K (2009) The growth factor midkine regulates the renin-angiotensin system in mice. J Clin Invest 119(6):1616–1625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fujita S, Shimojo N, Terasaki F, Otsuka K, Hosotani N, Kohda Y, Tanaka T, Nishioka T, Yoshida T, Hiroe M, Kitaura Y, Ishizaka N, Imanaka-Yoshida K (2013) Atrial natriuretic peptide exerts protective action against angiotensin II-induced cardiac remodeling by attenuating inflammation via endothelin-1/endothelin receptor A cascade. Heart Vessels 28(5):646–657

    Article  PubMed  Google Scholar 

  23. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase Akt pathway in human cancer. Nat Rev Cancer 2(7):489–501

    Article  PubMed  CAS  Google Scholar 

  24. Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4(12):937–947

    Article  PubMed  CAS  Google Scholar 

  25. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Baraldi PG, Borea PA (2006) Modulation of the Akt/Ras/Raf/Mek/Erk pathway by A3 adenosine receptor. Purinergic Signal 2(4):627–632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Moelling K, Schad K, Bosse M, Zimmermann S, Schweneker M (2002) Regulation of Raf-Akt cross-talk. J Biol Chem 277(34):31099–31106

    Article  PubMed  CAS  Google Scholar 

  27. Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, Shi Y, Kamiya K, Murohara T, Kodama I, Tardif JC, Shotten U, Van Wagoner DR, Dobrev D, Nattel S (2012) Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126(17):2051–2064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Olson ER, Shamhart PE, Naugle JE, Meszaros JG (2008) Angiotensin II-induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase C-delta and intracellular calcium in adult rat cardiac fibroblasts. Hypertension 51(3):704–711

    Article  PubMed  CAS  Google Scholar 

  29. Yamamoto Y, Osanai T, Nishizaki F, Sukekawa T, Izumiyama K, Sagara S, Okumura K (2012) Matrix metalloprotein-9 actiavtion under cell-to-cell interaction between endothelial cells and monocytes: possible role of hypoxia and tumor necrosis factor-α. Heart Vessel 27(6):539–546

    Article  Google Scholar 

  30. Wang W, Peng Y, Wang Y, Zhao X, Yuan Z (2009) Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phospahtidylinositol 3-kinase/AKT pathway. Clin Exp Pharmacol Physiol 36(9):899–903

    Article  PubMed  CAS  Google Scholar 

  31. Kapustian LL, Vigontina OA, Rozhko OT, Ryabenko DV, Michowski W, Lesniak W, Filipek A, Kroupskaya IV, Sidorik LL (2013) Hsp90 and its co-chaperone, Sgt1, as autoantigens in dilated cardiomyopathy. Heart Vessel 28(1):114–119

    Article  Google Scholar 

  32. Kitahara T, Shishido T, Suzuki S, Katoh S, Sasaki T, Ishino M, Nitobe J, Miyamoto T, Miyashita T, Watanabe T, Takeishi Y, Kubota I (2010) Serum midkine as a predictor of cardiac events in patients with chronic heart failure. J Cardiac Fail 16(4):308–313

    Article  CAS  Google Scholar 

  33. Netsu S, Shishido T, Kitahara T, Honda Y, Funayama A, Narui T, Kadowaki S, Takahashi H, Miyamoto T, Arimoto T, Nishiyama S, Watanabe T, Woo CH, Takeishi Y, Kubota I (2013) Midkine exacerbates pressure overload-induced cardiac remodeling. Biochem Biophys Res Commun 443(1):205–210

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Yukiomi Tsuji and Arihiro Sumida for technical advice and assistance in animal experiments. This work was supported by the Ministry of Education, Culture, Sports, Sciences and Technology, Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahide Harada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harada, M., Hojo, M., Kamiya, K. et al. Exogenous midkine administration prevents cardiac remodeling in pacing-induced congestive heart failure of rabbits. Heart Vessels 31, 96–104 (2016). https://doi.org/10.1007/s00380-014-0569-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0569-5

Keywords

Navigation