Skip to main content
Log in

A diagnostic study of the asymmetric distribution of rainfall during the landfall of typhoon Haitang (2005)

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The precipitation during landfall of typhoon Haitang (2005) showed asymmetric structures (left side/right side of the track). Analysis of Weather Research and Forecasting model simulation data showed that rainfall on the right side was more than 15 times stronger than on the left side. The causes were analyzed by focusing on comparing the water vapor flux, stability and upward motion between the two sides. The major results were as follows: (1) Relative humidity on both sides was over 80%, whereas the convergence of water vapor flux in the lower troposphere was about 10 times larger on the right side than on the left side. (2) Both sides featured conditional symmetric instability [MPV (moist potential vorticity) <0], but the right side was more unstable than the left side. (3) Strong (weak) upward motion occurred throughout the troposphere on the right (left) side. The Q vector diagnosis suggested that large-scale and mesoscale forcing accounted for the difference in vertical velocity. Orographic lift and surface friction forced the development of the asymmetric precipitation pattern. On the right side, strong upward motion from the forcing of different scale weather systems and topography caused a substantial release of unstable energy and the transportation of water vapor from the lower to the upper troposphere, which produced torrential rainfall. However, the above conditions on the left side were all much weaker, which led to weaker rainfall. This may have been the cause of the asymmetric distribution of rainfall during the landfall of typhoon Haitang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender, M. A., R. E. Tuleya, and Y. A. Kurihara, 1985: A numerical study of the effect of a mountain range on a landfalling tropical cyclone. Mon. Wea. Rev., 113, 567–582.

    Article  Google Scholar 

  • Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability—a possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945–962.

    Article  Google Scholar 

  • Chan, J. C., and X. D. Liang, 2003: Convective asymmetries associated with tropical cyclone landfall. Part I: f -plane simulations. J. Atmos. Sci., 60, 1560–1567.

    Article  Google Scholar 

  • Chen, L. S., X. D. Xu, Z. X. Luo, and J. Z. Wang, 2002: Introduction to Dynamics of Tropical Cyclone. China Meteorological Press, Beijing, 211–313. (in Chinese)

    Google Scholar 

  • Chen, L. S., and Y. H. Ding, 1979: Outline of the Western Pacific Typhoon. Science Press, Beijing, 440–488 pp. (in Chinese)

    Google Scholar 

  • Chen, L. S., and Z. Y. Meng, 2001: An overview on tropical cyclone research progress in China during the past ten years. Chinese J. Atmos. Sci., 25, 420–432. (in Chinese)

    Google Scholar 

  • Chen, L. S., Z. X. Luo, and Y. Li, 2004: Research advances on tropical cyclone landfall process. Acta Meteorologica Sinica, 62, 541–549. (in Chinese)

    Google Scholar 

  • Cline, I. M., 1926: Tropical cyclones. MacMillan Co., New York, N. Y., 301 pp.

    Google Scholar 

  • Ding, Y. H., 1989: Diagnostic and Analytical Methods in Synoptic Dynamics. Science Press, Beijing, 114–116. (in Chinese)

    Google Scholar 

  • Ding, Z. Y., Y. Wang, X. Y. Shen, and H. M. Xu, 2009: On the causes of rainband breaking and asymmetric precipitation in typhoon Haitang (2005) before and after its landfall. J. Trop. Meteor., 25, 513–520. (in Chinese)

    Google Scholar 

  • Dunn, G. E., and B. I. Miller, 1964: Atlantic Hurricanes. Louisiana State University Press, 377 pp.

    Google Scholar 

  • Dunn, L. B., 1991: Evaluation of vertical motion: Past, present, and future. Wea. Forecasting, 6, 65–73.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale twodimensional model. J. Armos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi: 10.1029/2002JD003296.

    Article  Google Scholar 

  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone. Part I: Storm structure. Mon. Wea. Rev., 105, 1119–1135.

    Article  Google Scholar 

  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339.

    Article  Google Scholar 

  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 31–38.

    Article  Google Scholar 

  • Huang, Y., S. W. Shou, and L. Y. Fu, 2009: A diagnostic analysis of PV and MPV on the heavy rain caused by typhoon Khanun. Meteorological Monthly, 35, 65–73. (in Chinese)

    Google Scholar 

  • Ji, C. X., G. Y. Xue, F. Zhao, Z. S. Yu, and H. Zhang, 2007: The numerical simulation of orographic effect on the rain and structure of typhoon Rananim during landfall. Chinese J. Atmos. Sci., 31, 233–244. (in Chinese)

    Google Scholar 

  • Jones, R. W., 1987: A simulation of hurricane landfall with a numerical model featuring latent heating by the resolvable scales. Mon. Wea. Rev., 115, 2279–2297.

    Article  Google Scholar 

  • Kain, J. S., and J. M. Frisch, 1993: Convective Parameterization for Mesoscale Models: The Kain-Fritsch Scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    Google Scholar 

  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen’s frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762–781.

    Article  Google Scholar 

  • Keyser, D., B. D. Schmidt, and D. G. Duffy, 1992: Quasigeostrophic vertical motions diagnosed from along-and crossisentrope components of the Q vector. Mon. Wea. Rev., 120, 731–741.

    Article  Google Scholar 

  • Lai, S. J., F. He, R. T. Zhao, T. L. Shen, and Q. S. Wu, 2007: The diagnostic analysis of “Longwang” typhoon. Scientia Meteorologica Sinica, 27, 266–271. (in Chinese)

    Google Scholar 

  • Li, S. Y., Z. Y. Ding, and N. Zhou, 2007: Numerical simulation and diagnostic analysis of the southern rainstorm of 0307 typhoon “Imbudo” influencing Guangxi. Journal of Oceanography in Taiwan Strait, 26, 204–212. (in Chinese)

    Google Scholar 

  • Lin, Y. L., D. B. Enskey, and S. Chiao, 2002: Orographic influences on rainfall and track deflection associated with the passage of a tropical cyclone. Mon. Wea. Rev., 130, 2929–2950.

    Article  Google Scholar 

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Malwer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated correlated-k model for the long-wave. J. Geophys. Res., 102D, 16663–16682.

    Article  Google Scholar 

  • Marks, F. D. Jr., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909–930.

    Article  Google Scholar 

  • Martin, J. E., 1999: Quasi-geostrophic forcing of ascent in the occluded sector of cyclones and the trowel airstream. Mon. Wea. Rev., 127, 70–88.

    Article  Google Scholar 

  • Martin, J. E., 2007: Lower-tropospheric height tendencies associated with the shearwise and transverse components of quasigeostrophic vertical motion. Mon. Wea. Rev., 135, 2803–2809.

    Article  Google Scholar 

  • Miller, B. I., 1958: Rainfall rates in Florida hurricanes. Mon. Wea. Rev., 86, 258–264.

    Article  Google Scholar 

  • Miller, B. I., P. P. Chase, and B. R. Jarvinen, 1972: Numerical prediction of tropical weather systems. Mon. Wea. Rev., 100, 825–835.

    Article  Google Scholar 

  • Niu, X. X., H. L. Du, and J. Y. Liu, 2005: The numerical simulation of rainfall and precipitation mechanism associated with typhoons Sinlaku (0216). Acta Meteorologica Sinica, 63, 57–68. (in Chinese)

    Google Scholar 

  • Parrish, J. R., R. W. Burpee, F. D. Marks Jr., and R. Grebe, 1982: Rainfall patterns observed by digitized radar during the landfall of hurricane Frederic (1979). Mon. Wea. Rev., 110, 1933–1944.

    Article  Google Scholar 

  • Powell, M. D., 1982: The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110, 1912–1932.

    Article  Google Scholar 

  • Powell, M. D., 1987: Changes in the low-level kinematic and thermodynamic structure of Hurricane Alicia (1983) at landfall. Mon. Wea. Rev., 115, 75–99.

    Article  Google Scholar 

  • Si, G. W., 1990: Torrential Rain and Severe Convective System. China Meteorological Press, Beijing, 128 pp. (in Chinese)

    Google Scholar 

  • Sinclair, M. R., 1994: A diagnostic model for estimating orographic precipitation. J. Appl. Meteor., 33, 1163–1175.

    Article  Google Scholar 

  • Tao, S. Y., 1980: Torrential Rain of China. Science Press, Beijing, 132 pp. (in Chinese)

    Google Scholar 

  • Tao, Z. Y., B. J. Tian, and W. Huang, 1994: Asymmetry structure and torrential rain of landing typhoon 9216. Journal of Tropical Meteorology, 10, 69–77. (in Chinese)

    Google Scholar 

  • Tuleya, R. E., and Y. Kurihara, 1978: A numerical simulation of the landfall of tropical cyclones. J. Atmos. Sci., 35, 242–257.

    Article  Google Scholar 

  • Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 3172–3196.

    Article  Google Scholar 

  • Wang, J., Z. J. Ke, and J. X. Jiang, 2007: A diagnostic analysis to the asymmetric distribution of typhoon rainfall area. J. Trop. Meteor., 23, 563–568. (in Chinese)

    Google Scholar 

  • Wang, Y., Z. Y. Ding, X. Li, and Q. Wang, 2010: Dynamic analysis of asymmetric spiral rain bands around the landing of typhoon Haitang (2005). J. Trop. Meteor., 16, 143–153. (in Chinese)

    Google Scholar 

  • Wang, S. J., and G. F. Chen, 1997: A study on the criterion for interpreting typhoon heavy rain location. J. Appl. Meteor., 8, 167–174. (in Chinese)

    Google Scholar 

  • Wu, G. X., Y. P. Cai, and X. J. Tang, 1995: Moist potential vorticity and slantwise vorticity development. Acta Meteorologica Sinica, 53, 387–405. (in Chinese)

    Google Scholar 

  • Wu, L. G., J. Liang, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 2208–2221.

    Article  Google Scholar 

  • Yang, M.-J., S. A. Braun, and D.-S. Chen, 2011: Water budget of typhoon Nari (2001). Mon. Wea. Rev., 139, 3809–3828.

    Article  Google Scholar 

  • Yue, C. J., 2009a: A quantitative study of asymmetric characteristic genesis of precipitation associated with typhoon Haitang. Chinese J. Atmos. Sci., 33, 51–70. (in Chinese)

    Google Scholar 

  • Yue, C. J., 2009b: The Q vector analysis of the heavy rainfall from Meiyu Front cyclone: A case study. Acta Meteorologica Sinica, 23, 68–80.

    Google Scholar 

  • Yue, C.-J., and Y. Cao, 2014: Study on the genesis of asymmetrical distribution characteristics of precipitation associated with the typhoon Haitang (2005) from the viewpoint of atmospheric factor. J. Trop. Meteor., 30, 219–228. (in Chinese)

    Google Scholar 

  • Yue, C. J., S. W. Shou, K. P. Lin, and X. P. Yao, 2003: Diagnosis of the heavy rain near a Meiyu front using the wet Q vector partitioning method. Adv. Atmos. Sci., 20, 37–44, doi: 10.1007/BF03342048.

    Article  Google Scholar 

  • Yue, C.-J., S.-W. Shou, G. Zeng, and Y.-Q. Wang, 2008: Preliminary study on asymmetric cause of formation of precipitation associated with typhoon Haitang. Plateau Meteorology, 27, 1334–1342. (in Chinese)

    Google Scholar 

  • Yue, C.-J., X.-Q. Lu, X. F. Li, and Z.-P. Zong, 2011: A study of partitioning Q vector on background conditions of a torrential rainfall over Shanghai, China on 25 August 2008. J. Trop. Meteor., 17, 231–247.

    Google Scholar 

  • Zhao, Y., and Z.-M. Wu, 2004: An analysis of the potential vorticity for the northward typhoon 9711 evolution and rainstorm. Journal of Ocean University of China, 34, 13–21. (in Chinese)

    Google Scholar 

  • Zhu, Q. G., J. R. Lin, S. W. Shou, and D. S. Tang, 1992: Synoptic Principle and Method. China Meteorological Press, Beijing, 322–464. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caijun Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, C., Gao, S., Liu, L. et al. A diagnostic study of the asymmetric distribution of rainfall during the landfall of typhoon Haitang (2005). Adv. Atmos. Sci. 32, 1419–1430 (2015). https://doi.org/10.1007/s00376-015-4246-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-4246-0

Key words

Navigation