Skip to main content
Log in

Development of cloud detection methods using CFH, GTS1, and RS80 radiosondes

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The accuracies of three instruments in measuring atmospheric column humidity were assessed during an upper troposphere and lower stratosphere observation campaign conducted from 7 to 13 August 2009 in Kunming, China. The three instruments are a cryogenic frost-point hygrometer (CFH), a Vaisala RS80 radiosonde (RS80), and a GTS1 radiosonde (GTS1). The accuracy of relative humidity (RH) measurements made by the CFH, GTS1, and RS80 was similar between the surface and 500 hPa (∼5.5 km above sea level). However, above 500 hPa, the errors in RH measurements made by the RS80, relative to measurements made by the CFH, are much less than those detected with the GTS1. Three different retrieval methods for determining cloud boundaries from CFH, RS80, and GTS1 measurements were developed and take into account the differences in accuracy among the three instruments. The method for the CFH is based on RH thresholds at all levels, which demands high accuracy. Given that the accuracy of RH measurements decreases at higher altitudes, the cloud detection methods for RS80 and GTS1 are different for different altitude ranges. Below 5 km, the methods for the RS80 and the GTS1 are similar to that of the CFH; above 5 km, the methods for the RS80 and the GTS1 are both developed based on the second-order derivatives of temperature and RH with respect to height, but with different criteria applied. Comparisons of cloud-layer retrievals derived from the three measurements are also made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alduchov, O. A., and E. E. Eskridge, 1996: Improved Magnus’ form approximation of saturation vapor pressure. J. Appl. Meteor., 35, 601–609.

    Article  Google Scholar 

  • Arabey, E. N., 1975: Radiosonde data as means for cloud layers revealing cloud layer. Meteorologiya i Gidrologiya, 6, 23–37. (in Russian)

    Google Scholar 

  • AWS, 1979: The use of the skew of T, log P diagram in analysis and forecasting. Air Weather Service Tech. Rep., AWS/TR-79/006, Scott AFB, IL, 150pp.

  • Bian, J., 2009: Recent advances in the study of atmospheric vertical structures in upper troposphere and lower stratosphere. Advance in Earth Science, 24(3), 262–271. (in Chinese)

    Google Scholar 

  • Bian, J., H. Chen, H. Vömel, Y. Duan, Y. Xuan, and D. Lü, 2011: Intercomparison of humidity and temperature sensors: GTS1, Vaisala RS80, and CFH. Adv. Atmos. Sci., 28(1), 139–146, doi: 10.1007/s00376-010-9170-8.

    Article  Google Scholar 

  • Cady-Pereira, K. E., M. W. Shephard, D. D. Turner, E. J. Mlawer, S. A. Clough, and T. J. Wagner, 2008: Improved daytime column-integrated precipitable water vapor from Vaisala radiosonde humidity sensors. J. Atmos. Oceanic Technol., 25, 873–883, doi:10.1175/2007JTECHA1027.1.

    Article  Google Scholar 

  • Chahine, M. T., and Coauthors, 2006: AIRS improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911–926.

    Article  Google Scholar 

  • Chen, H., J. Bian, and D. Lü, 2006: Advances and prospects in the study of stratosphere troposphere exchange. Chinese J. Atmos. Sci., 30(5), 813–820. (in Chinese)

    Google Scholar 

  • Chernykh, I. V., 1999: Averages of relative humidity at the cloud base level. WMO report, No. 28, WMO/TD 942, 2.7–2.8.

  • Chernykh, I. V., and R. E. Eskridge, 1996: Determination of cloud amount and level from radiosonde soundings. J. Appl. Meteor., 35, 1362–1369.

    Article  Google Scholar 

  • Chernykh, I. V., and O. A. Alduchov, 2000: Comparison of cloud layers detecting by different methods. Proc. Fifth International Cloud Modeling Workshop, Colorado, USA, 1–22.

  • Chernykh, I. V., O. A. Alduchov, and R. E. Eskridge, 2000: Trends in low and high cloud boundaries and errors in height determination of cloud boundaries. Bull. Amer. Meteor. Soc., 82(9), 1941–1947.

    Article  Google Scholar 

  • Dolgin, M. I., 1983: Determine scheme clouds from atmosphere sounding in Antarctic Continent. Meteorologiya i Gidrologiya, 11, 47–51. (in Russian)

    Google Scholar 

  • Han, D., and R. G. Ellingson, 2000: An experimental technique for testing the validity of cumulus cloud parameterizations for longwave radiation calculations. J. Appl. Meteor., 39, 1147–1159.

    Article  Google Scholar 

  • Hyland, R.W., and A. Wexler, 1983: Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K. ASHRAE Transactions, 89(2A), 500–519.

    Google Scholar 

  • Li, F., 2006: New developments with upper-air sounding in China. Instruments and Observing Methods Report No. 94, WMO/TD No.1354, WMO, Geneva, 9pp.

    Google Scholar 

  • Li, W., F. Li, Z. Zhao, F. Liu, B. Li, and H. Li, 2009: Technical Assessment Report of L-band Upper Air Sounding System. China Meteorological Press, Beijing, 95pp. (in Chinese)

    Google Scholar 

  • Miloshevich, L. M., H. Vömel, A. Paukkunen, A. J. Heymsfield, and S. J. Oltmans, 2001: Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J. Atmos. Oceanic Technol., 18, 135–155.

    Article  Google Scholar 

  • Miloshevich, L. M., A. Paukkunen, H. Vömel, and S. J. Oltmans, 2004: Development and validation of a time lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Technol., 21, 1305–1327.

    Article  Google Scholar 

  • Miloshevich, L. M., H. Vömel, D. N. Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo, 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEXG and implications for AIRS validation. J. Geophys. Res., 111, D09S10, doi: 10.1029/2005JD006083.

    Article  Google Scholar 

  • Miloshevich, L. M., H. Vömel, D. N. Whiteman, and T. Leblanc, 2009: Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J. Geophys. Res., 114, D11305, doi:10.1029/2008JD011565.

    Article  Google Scholar 

  • Minnis, P., Y. Yi, J. Huang, and J. K. Ayers, 2005: Relationships between radiosonde and RUC-2 meteorological conditions and cloud occurrence determined from ARM data. J. Geophys. Res., 110, D23204, doi:10.1029/2005JD006005.

    Article  Google Scholar 

  • Naud, C., J. P. Muller, and E. E. Clothiaux, 2003: Comparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site. J. Geophys. Res., 108(D4), 4140, doi:10.1029/2002JD002887.

    Article  Google Scholar 

  • Poore, K. D., J. Wang, and W. Rossow, 1995: Cloud layer thickness from a combination of surface and upperair observations. J. Climate, 8, 550–568.

    Article  Google Scholar 

  • Slingo, J. M., 1980: A cloud parameterization scheme derived from GATE data for use with a numerical model. Quart. J. Roy. Meteor. Soc., 106, 747–770.

    Article  Google Scholar 

  • Soden, B. J., D. D. Turner, B. M. Lesht, and L. M. Miloshevich, 2004: An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement program. J. Geophys. Res., 109, D04105, doi:10.1029/2003JD003828.

    Article  Google Scholar 

  • Turner, D. D., B.M. Lesht, S. A. Clough, J. C. Liljegren, H. E. Revercomb, and D. C. Tobin, 2003: Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. J. Atmos. Oceanic Technol., 20, 117–132.

    Article  Google Scholar 

  • Vömel, H., D. E. David, and K. Smith, 2007a: Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations. J. Geophys. Res., 112, D08305, doi:10.1029/2006JD007224.

    Article  Google Scholar 

  • Vömel, H., and Coauthors, 2007b: Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Oceanic Technol., 24, 953–963.

    Article  Google Scholar 

  • Wang, J., 1997: Determination of cloud vertical structure from upper air observations and its effects on atmospheric circulation in a GCM. Ph.D. dissertation. Columbia University, 233pp.

  • Wang, J., and W. B. Rossow, 1995: Determination of cloud vertical structure from upper-air observations. J. Appl. Meteor., 34, 2243–2258.

    Article  Google Scholar 

  • Wang, J., W. B. Rossow, T. Uttal, and M. Rozendaal, 1999: Variability of cloud vertical structure during ASTEX observed from a combination of rawinsonde, radar, ceilometer, and satellite. Mon. Wea. Rev., 127, 2482–2502.

    Article  Google Scholar 

  • Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine, 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde-Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19, 981–1002.

    Article  Google Scholar 

  • Wang, J., D. J. Carlson, D. B. Parsons, T. F. Hock, D. Lauritsen, H. L. Cole, K. Beierle, and E. Chamberlain, 2003: Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication. Geophys. Res. Lett., 30(16), 1860, doi:10.1029/2003GL016985.

    Article  Google Scholar 

  • Wang, Z., and Y. Sheng, 1991: The new method of deriving cloud parameters from radiosonde data. Education and Science and Technology of Meteorology, 1, 18–21. (in Chinese)

    Google Scholar 

  • Xu, W., 2006: Carbon humidity sensor of GTS Radiosonde performance testing results and its application. M. S. thesis, Chinese Academy of Meteorological Sciences, 64pp. (in Chinese)

  • Yao, W., Y. Ma, and W. Xu, 2008: Relative humidity error of L-band electronic radiosonde and its application. Journal of Applied Meteorological Science, 19(3), 356–361. (in Chinese)

    Google Scholar 

  • Zhang, J., H. Chen, Z. Li, X. Fan, L. Peng, Y. Yu, and M. Cribb, 2010: Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res., 115, D00K30, doi:10.1029/2010JD014030.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Chen  (陈洪滨).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Chen, H., Bian, J. et al. Development of cloud detection methods using CFH, GTS1, and RS80 radiosondes. Adv. Atmos. Sci. 29, 236–248 (2012). https://doi.org/10.1007/s00376-011-0215-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-011-0215-4

Key words

Navigation