Skip to main content
Log in

Deduction of the sensible heat flux from SODAR data

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A new method for deduction of the sensible heat flux is validated with three sets of published SODAR (sound detection and ranging) data. Although the related expressions have previously been confirmed by the author with surface layer data, they have not yet been validated with observations from the boundary layer before this work. In the study, selected SODAR data are used to test the method for the convective boundary layer. The sensible heat flux (SHF) retrieved from SODAR data is found to decrease linearly with height in the mixed layer. The surface sensible heat fluxes derived from the deduced sensible heat flux profiles under convective conditions agree well with those measured by the eddy correlation method. The characteristics of SHF profiles deduced from SODAR data in different places reflect the background meteorology and terrain. The upper part of the SHF profile (SHFP) for a complicated terrain is found to have a different slope from the lower part. It is suggested that the former reflects the advective characteristic of turbulence in upwind topography. A similarity relationship for the estimation of SHFP in a well mixed layer with surface SHF and zero-heat-flux layer height is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asimakopoulos, D. N., C. G. Helmis, and J. Michopoulos, 2004: Evaluation of SODAR methods for the determination of the atmospheric boundary layer mixing height. Meteor. Atmos. Phys., 85, 85–92.

    Article  Google Scholar 

  • Bian, L., X. Xu, L. Lu, Z. Gao, M. Zhou, and H. Liu, 2003: Analyses of turbulence parameters in the near-surface layer at Qamdo of the Southeastern Tibetan Plateau. Adv. Atmos. Sci., 20(3), 369–378.

    Article  Google Scholar 

  • Chintawongvanich, P., R. Olsen, and C. A. Biltoft, 1989: Intercomparison of wind measurements from two acoustic Doppler Sodars, a laser Doppler Lidar, and in situ sensors. J. Atmos. Oceanic Technol., 6, 785–798.

    Article  Google Scholar 

  • Coulter, R. L., 1990: Minisodars—Applications and Potential. Proc. 5th International Symposium on Acoustic Remote Sensing of the Atmosphere and Oceans, New Delhi, India, 88–96.

  • Coulter, R. L., and M. L. Wesley, 1980: Estimates of surface heat flux from Sodar and laser scintillation measurements in the unstable boundary layer. J. Appl. Meteor., 19, 1209–1222.

    Article  Google Scholar 

  • Fairall, C. W., 1987: A top-down and bottom-up diffusion model of C 2T and C 2Q in the entraining convective boundary layer. J. Atmos. Sci., 44, 1009–1017.

    Article  Google Scholar 

  • Finkelstein, P. L., J. C. Kaimal, J. E. Gaynor, M. A. Graves, and T. J. Lockhart, 1986: Comparison of wind monitoring system. Part II: Doppler Sodars. J. Atmos. Oceanic Technol., 3, 583–593.

    Article  Google Scholar 

  • Gaynor, J. E., 1977: Acoustic Doppler measurements of atmospheric boundary layer velocity structure functions and energy dissipation rates. J. Appl. Meteor., 16, 148–155.

    Article  Google Scholar 

  • Georges, T. M., and S. F. Clifford, 1974: Estimating refractive effects in acoustic sounding. The Journal of the Acoustical Society of America, 55, 934–936.

    Article  Google Scholar 

  • Hill, R. J., G. R. Ochs, and J. J. Wilson, 1992: Measuring surface-layer fluxes of heat and momentum using optical scintillation. Bound.-Layer Meteor., 58, 391–408.

    Article  Google Scholar 

  • ISO 9613-1, 1993: Acoustics-attenuation of sound during propagation outdoors—Part 1: Calculation of the attenuation of sound by atmospheric absorption. International Organization for Standardization, Geneva, Switzerland.

  • Kalogiros, J. A., C. G. Helmis, D. N. Asimakopoulos, and P. G. Papageorgas, 1999: Estimation of ABL parameters using the vertical velocity measurements of an acoustic sounder. Bound.-Layer Meteor., 91, 413–449.

    Article  Google Scholar 

  • Keder, J., T. Foken, W. Gerstmann, and V. Schindler, 1989: Measurement of wind parameters and heat flux with the Sensitron Doppler Sodar. Bound.-Layer Meteor., 46, 195–204.

    Article  Google Scholar 

  • Kristensen, L., and J. E. Gaynor, 1986: Errors in second moments estimated from monostatic Doppler Sodar winds. Part 1: Theoretical description. J. Atmos. Oceanic Technol., 3, 523–528.

    Article  Google Scholar 

  • Li, M., Y. Ma, W. Ma, Z. Hu, H. Ishikawa, Z. Su, and F. Sun, 2006: Analysis of turbulence characteristics over the northern Tibetan Plateau area. Adv. Atmos. Sci., 23(4), 579–585.

    Article  Google Scholar 

  • Manghnani, V., S. Raman, D. S. Niyogi, V. Parameswara, J. M. Morrison, S. V. Ramana, and J. V. S. S. Raju, 2000: Marine boundary-layer variability over the Indian Ocean during INDOEX (1998). Bound.-Layer Meteor., 97(3), 411–430.

    Article  Google Scholar 

  • Meijninger, W. M. L., O. K. Hartogensis, W. Kohsiek, J. C. B. Hoedjes, R. M. Zuurbier, and H. A. R. De Bruin, 2002: Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface-flevoland field experiment. Bound.-Layer Meteor., 105, 37–62.

    Article  Google Scholar 

  • Moulsley, T. J., D. N. Asimakopoulos, R. S. Cole, B. A. Crease, and S. J. Caughey, 1981: Measurement of boundary layer structure parameter profiles by acoustic sounding and comparison with direct measurement. Quart. J. Roy. Meteor. Soc., 107, 203–230.

    Article  Google Scholar 

  • Neff, W. D., 1975: Quantitative evaluation of acoustic echoes from the planetary boundary layer. NOAA Technical Report, ERL 322-WPL 38, 34pp.

  • Ostashev, V. E., 1994: Sound propagation and scattering in media with random inhomogeneities of sound speed, density and medium velocity. Waves in Random Media, 4(4), 403–428.

    Article  Google Scholar 

  • Pan, N. X., 1997: Determination of the turbulent structure parameters. Acoustic Remote Sensing Applications, S. P. Singal, Ed., Narosa Publishing House, New Delhi, India, 179–190.

    Google Scholar 

  • Pan, N. X., 2002: Expressions of sensible heat flux based on a dimensional analysis. J. Atmos. Oceanic Technol., 19, 1163–1169.

    Article  Google Scholar 

  • Pan, N. X., 2003: Excess attenuation of an acoustic beam by turbulence. The Journal of the Acoustical Society of America, 114(6), 3102–3111.

    Article  Google Scholar 

  • Pan, N. X., and Y. Zheng, 1986: Wind effect on measurement of wind velocity with Doppler Sodar. Acta Scientiarum Naturalium Universitatis Pekinensis, 1, 98–105. (in Chinese)

    Google Scholar 

  • Panofsky, H. A., H. Tenekes, and D. H. Lenschow, 1977: The characteristics of turbulence volocity components in the surface layer under convective conditions. Bound.-Layer Meteor., 11, 355–361.

    Article  Google Scholar 

  • Singal, S. P., 1989: Acoustic sounding stability studies. Air Pollution Control. Vol. 2, Encyclopedia of Environment Control Technology, P. N. Cheremisinoff, Ed., Gulf Publishing, Houston, USA, 1003–1061.

    Google Scholar 

  • Sisterson, D. L., and R. L. Coulter, 1979: Sodar Calibration Method. Argonne National Laboratory Radiological and Environmental Division Annual Report, ANL-78-65, Pt. IV, 7–18.

  • Sorbjan, Z., R. L. Coulter, and M. L. Wesely, 1991: Similarity scaling applied to sodar observations of the convective boundary layer above an irregular hill. Bound.-Layer Meteor., 56, 33–50.

    Article  Google Scholar 

  • Spizzichino, A., 1974: The refraction of acoustic waves in the atmosphere and its effect on Sodar wind measurements. Annals of Telecommunications, 29, 301–310.

    Google Scholar 

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666pp.

  • Tatarskii, V. I., 1961: Wave Propagation in a Turbulent Medium. R. A. Silverman, Trans., McGraw-Hill Book Company, Inc., New York, 285pp.

    Google Scholar 

  • Thiermann, V., and H. Grassl, 1992: The measurement of turbulent surface layer fluxes by use of bichromatic scintillation. Bound.-Layer Meteor., 58, 367–389.

    Article  Google Scholar 

  • Tsvang, L. R., 1969: Microstructure of temperature fields in the free atmosphere. Radio Science, 4, 1175–1177.

    Article  Google Scholar 

  • Vogt, S., and P. Thomas, 1994: Estimation of the sensible heat flux and the temperature structure parameter by sodar and sonic anemometer: An intercomparison. Journal of Remote Sensing, 15(2), 507–516.

    Article  Google Scholar 

  • Weill, A., L. Eymard, M. E. Lequere, C. Klapisz, F. Baudin, and P. Van Grunderbeeck, 1978: Investigations of the planetary boundary layer with an acoustic Doppler sounder. Proc. 4th Symposium on Meteorological Observations and Instrumentation, American Meteorological Society, Denver, Colo., 10–14 April, 415–421.

    Google Scholar 

  • Weill, A., C. Klapisz, B. Strauss, F. Baudin, C. Jaupart, P. V. Grunderbeeck, and J. P. Goutorbe, 1980: Measuring heat flux and structure functions of temperature fluctuations with an acoustic doppler sodar. J. Appl. Meteorol., 19, 199–205.

    Article  Google Scholar 

  • Wyngaard, J. C., 1990: Scalar fluxes in the planetary boundary layer-theory, modeling, and measurement. Bound.-Layer Meteor., 50, 49–75.

    Article  Google Scholar 

  • Wyngaard, J. C., and M. A. LeMone, 1980: Behavior of the refractive index structure parameter in the entraining boundary layer. J. Atmos. Sci., 37, 1573–1585.

    Article  Google Scholar 

  • Zhou, M., N. Lu, Y. Chen, and S. Li, 1981: The lump structure of turbulent field in atmospheric boundary layer. Scientia Sinica, 24(12), 1705–1716.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naixian Pan  (潘乃先).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, N., Li, C. Deduction of the sensible heat flux from SODAR data. Adv. Atmos. Sci. 25, 253–266 (2008). https://doi.org/10.1007/s00376-008-0253-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-008-0253-8

Key words

Navigation