Skip to main content

Advertisement

Log in

Bioorganic fertilizer maintains a more stable soil microbiome than chemical fertilizer for monocropping

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Understanding the responses of soil microbiome composition to various farming practices is important for selecting suitable managements to maintain soil functions. In this study, the influences of heavy chemical fertilizer application (CF) and reduced chemical fertilizer supplemented with organic (OF) or bioorganic fertilizer (BF, BF = OF + Trichoderma) on composition of soil microbiome were investigated for monocropping cucumber systems using a five-season continuous pot experiment. The MiSeq sequencing data indicated that the CF treatment resulted in the lowest fungal diversity and the BF treatment resulted in a relatively higher one close to the initial soil (CK). The BF and OF treatments had similar impacts on the composition of bacterial community, and the CF treatment significantly reduced bacterial diversity. Although both OF and BF treatments had better plant growth responses, they had less disturbance on the composition of fungal community relative to the CF treatment. The BF treatment is more predictable than the other treatments for postponing fungal diversity as the inoculated fungal species significantly (p < 0.05) affected the fungal community. In conclusion, the combination of bioorganic fertilizers with reduced chemical fertilizer application can maintain a diverse soil microbiome in cucumber monocropping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12. doi:10.1007/s00253-009-2196-0

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2010) Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46:54–58. doi:10.1016/j.apsoil.2010.06.010

    Article  Google Scholar 

  • Ai C, Liang G, Sun J, Wang X, He P, Zhou W, He X (2015) Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol Biochem 80:70–78. doi:10.1016/j.soilbio.2014.09.028

    Article  CAS  Google Scholar 

  • Altomare C, Tringovska I (2011) Beneficial soil microorganisms, an ecological alternative for soil fertility management. In: Lichtfouse E (ed) Genetics, biofuels and local farming systems. Springer, Dordrecht, pp 161–214

    Chapter  Google Scholar 

  • Bakker MG, Chaparro JM, Manter DK, Vivanco JM (2015) Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant Soil 392:115–126. doi:10.1007/s11104-015-2446-0

    Article  CAS  Google Scholar 

  • Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi:10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  • Besemer K, Peter H, Logue JB, Langenheder S, Lindström ES, Tranvik LJ, Battin TJ (2012) Unraveling assembly of stream biofilm communities. ISME J 6:1459–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai F, Chen W, Wei Z, Guan P, Li R, Ran W, Shen Q (2015) Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant Soil 388:337–350. doi:10.1007/s11104-014-2326-z

    Article  CAS  Google Scholar 

  • Chávez R, Bull P, Eyzaguirre J (2006) The xylanolytic enzyme system from the genus Penicillium. J Biotechnol 123:413–433. doi:10.1016/j.jbiotec.2005.12.036

    Article  PubMed  Google Scholar 

  • Chen L, Yang X, Raza W, Li J, Liu Y, Qiu M, Zhang F, Shen Q (2011) Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl Microbiol Biotechnol 89:1653–1663. doi:10.1007/s00253-010-2948-x

    Article  CAS  PubMed  Google Scholar 

  • Chu H, Lin X, Fujii T, Morimoto S, Yagi K, Hu J, Zhang J (2007) Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol Biochem 39:2971–2976. doi:10.1016/j.soilbio.2007.05.031

    Article  CAS  Google Scholar 

  • Crecchio C, Curci M, Pellegrino A, Ricciuti P, Tursi N, Ruggiero P (2007) Soil microbial dynamics and genetic diversity in soil under monoculture wheat grown in different long-term management systems. Soil Biol Biochem 39:1391–1400. doi:10.1016/j.soilbio.2006.12.016

    Article  CAS  Google Scholar 

  • Cytryn E, Kautsky L, Ofek M, Mandelbaum RT, Minz D (2011) Short-term structure and functional changes in bacterial community composition following amendment with biosolids compost. Appl Soil Ecol 48:160–167. doi:10.1016/j.apsoil.2011.03.010

    Article  Google Scholar 

  • de Castro VH, Schroeder LF, Quirino BF, Kruger RH, Barreto CC (2013) Acidobacteria from oligotrophic soil from the Cerrado can grow in a wide range of carbon source concentrations. Can J Microbiol 59:746–753. doi:10.1139/cjm-2013-0331

    Article  PubMed  Google Scholar 

  • Esperschütz J, Gattinger A, Mäder P, Schloter M, Fließbach A (2007) Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations: response of soil microbial biomass and community structures. FEMS Microbiol Ecol 61:26–37. doi:10.1111/j.1574-6941.2007.00318.x

    Article  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Nati Aca Sci U S A 103:626–631. doi:10.1073/pnas.0507535103

    Article  CAS  Google Scholar 

  • Gómez JP, Bravo GA, Brumfield RT, Tello JG, Cadena CD (2010) A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of neotropical forest birds: antbird phylogenetic community ecology. J Anim Ecol 79:1181–1192. doi:10.1111/j.1365-2656.2010.01725.x

    Article  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56. doi:10.1038/nrmicro797

    Article  CAS  PubMed  Google Scholar 

  • Hervás A, Landa B, Datnoff LE, Jiménez-Díaz RM (1998) Effects of commercial and indigenous microorganisms on Fusarium wilt development in chickpea. Biol Control 13:166–176

    Article  Google Scholar 

  • Högberg MN, Yarwood SA, Myrold DD (2014) Fungal but not bacterial soil communities recover after termination of decadal nitrogen additions to boreal forest. Soil Biol Biochem 72:35–43. doi:10.1016/j.soilbio.2014.01.014

    Article  Google Scholar 

  • Huang X, Chen L, Ran W, Shen Q, Yang X (2011) Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Appl Microbiol Biotechnol 91:741–755. doi:10.1007/s00253-011-3259-6

    Article  CAS  PubMed  Google Scholar 

  • Huang L-F, Song L-X, Xia X-J, Mao W-H, Shi K, Zhou Y-H, Yu J-Q (2013) Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol 39:232–242. doi:10.1007/s10886-013-0244-9

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Liu L, Wen T, Zhu R, Zhang J, Cai Z (2015) Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation. Microbiol Res 181:33–42. doi:10.1016/j.micres.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  • Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513. doi:10.1111/j.1469-8137.2010.03197.x

    Article  CAS  PubMed  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi:10.1128/AEM.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leaw SN, Chang HC, Sun HF, Barton R, Bouchara JP, Chang TC (2006) Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J Clin Microbiol 44:693–699. doi:10.1128/JCM.44.3.693-699.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Li X, Kong W, Wu Y, Wang J (2010) Effect of monoculture soybean on soil microbial community in the Northeast China. Plant Soil 330:423–433. doi:10.1007/s11104-009-0216-6

    Article  CAS  Google Scholar 

  • Li X, Ding C, Zhang T, Wang X (2014) Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol Biochem 72:11–18. doi:10.1016/j.soilbio.2014.01.019

    Article  CAS  Google Scholar 

  • Li X, Sun M, Zhang H, Xu N, Sun G (2016) Use of mulberry–soybean intercropping in salt–alkali soil impacts the diversity of the soil bacterial community. Microb Biotechnol 9:293–304. doi:10.1111/1751-7915.12342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Herbert SJ (2002) Fifteen years of research examining cultivation of continuous soybean in northeast China: a review. Field Crops Res 79:1–7

    Article  Google Scholar 

  • Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M, Daniel R (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One 6:e17000. doi:10.1371/journal.pone.0017000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, Gockel S, Hemp A, Kalko EK, Linsenmair KE, Pfeiffer S, Renner S, Schöning I, Weisser WW, Wells K, Fischer M, Overmann J, Friedrich MW (2012) Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microbiol 78:7398–7406. doi:10.1128/AEM.01325-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayyar A, Hamel C, Lafond G, Gossen B, Hanson K, Germida J (2009) Soil microbial quality associated with yield reduction in continuous-pea. Appl Soil Ecol 43:115–121. doi:10.1016/j.apsoil.2009.06.008

    Article  Google Scholar 

  • Orr CH, Leifert C, Cummings SP, Cooper JM (2012) Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects. PLoS One 7:e52891. doi:10.1371/journal.pone.0052891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51:403–415. doi:10.1007/s00374-015-0996-1

    Article  CAS  Google Scholar 

  • Qiu M, Li S, Zhou X, Cui X, Vivanco JM, Zhang N, Shen Q, Zhang R (2014) De-coupling of root–microbiome associations followed by antagonist inoculation improves rhizosphere soil suppressiveness. Biol Fertil Soils 50:217–224. doi:10.1007/s00374-013-0835-1

    Article  CAS  Google Scholar 

  • Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2007) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123. doi:10.1007/s11101-006-9032-2

    Article  Google Scholar 

  • Romaniuk R, Giuffré L, Costantini A, Nannipieri P (2011) Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems. Ecol Indic 11:1345–1353. doi:10.1016/j.ecolind.2011.02.008

    Article  CAS  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. doi:10.1038/ismej.2010.58

    Article  PubMed  Google Scholar 

  • Saha S, Prakash V, Kundu S, Kumar N, Mina BL (2008) Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean–wheat system in N-W Himalaya. Eur J Soil Biol 44:309–315. doi:10.1016/j.ejsobi.2008.02.004

    Article  CAS  Google Scholar 

  • Sanguin H, Sarniguet A, Gazengel K, Moënne-Loccoz Y, Grundmann GL (2009) Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytol 184:694–707. doi:10.1111/j.1469-8137.2009.03010.x

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Wang D, Ruan Y, Xue C, Zhang J, Li R, Shen Q (2014) Deep 16S rRNA pyrosequencing reveals a bacterial community associated with banana Fusarium wilt disease suppression induced by bio-organic fertilizer application. PLoS One 9:e98420. doi:10.1371/journal.pone.0098420

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Z, Ruan Y, Chao X, Zhang J, Li R, Shen Q (2015) Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol Fertil Soils 51:553–562. doi:10.1007/s00374-015-1002-7

    Article  CAS  Google Scholar 

  • Sinninghe Damsté JS, Rijpstra WIC, Geenevasen JAJ, Strous M, Jetten MSM (2005) Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox): membrane lipids of anammox bacteria. FEBS J 272:4270–4283. doi:10.1111/j.1742-4658.2005.04842.x

    Article  PubMed  Google Scholar 

  • Somai BM, Dean RA, Farnham MW, Zitter TA, Keinath AP (2002) Internal transcribed spacer regions 1 and 2 and random amplified polymorphic DNA analysis of Didymella bryoniae and related Phoma species isolated from cucurbits. Phytopathology 92:997–1004

    Article  CAS  PubMed  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Biometrics, Ithaca NY

  • Tian W, Wang L, Li Y, Zhuang K, Li G, Zhang J, Xiao X, Xi Y (2015) Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agric Ecosyst Environ 213:219–227. doi:10.1016/j.agee.2015.08.009

    Article  CAS  Google Scholar 

  • Wang B, Li R, Ruan Y, Ou Y, Zhao Y, Shen Q (2015) Pineapple–banana rotation reduced the amount of Fusarium oxysporum more than maize–banana rotation mainly through modulating fungal communities. Soil Biol Biochem 86:77–86. doi:10.1016/j.soilbio.2015.02.021

    Article  CAS  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, DeBoy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren Q, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu C, Zafar N, Zhou L, Kuske CR (2009) Three genomes from the phylum acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056. doi:10.1128/AEM.02294-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner D, Newton WE (eds) (2005) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht

    Google Scholar 

  • Wu K, Yuan S, Wang L, Shi J, Zhao J, Shen B, Shen Q (2014) Effects of bio-organic fertilizer plus soil amendment on the control of tobacco bacterial wilt and composition of soil bacterial communities. Biol Fertil Soils 50:961–971. doi:10.1007/s00374-014-0916-9

    Article  Google Scholar 

  • Xu L, Ravnskov S, Larsen J, Nilsson RH, Nicolaisen M (2012) Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol Biochem 46:26–32. doi:10.1016/j.soilbio.2011.11.010

    Article  CAS  Google Scholar 

  • Xun W, Huang T, Zhao J, Ran W, Wang B, Shen Q (2015) Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Soil Biol Biochem 90:10–18. doi:10.1016/j.soilbio.2015.07.018

    Article  CAS  Google Scholar 

  • Yousuf B, Keshri J, Mishra A, Jha B (2012) Application of targeted metagenomics to explore abundance and diversity of CO2-fixing bacterial community using cbbL gene from the rhizosphere of Arachis hypogaea. Gene 506:18–24. doi:10.1016/j.gene.2012.06.083

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Chaparro JM, Manter DK, Zhang R, Vivanco JM, Shen Q (2015) Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biol Biochem 89:206–209. doi:10.1016/j.soilbio.2015.07.009

    Article  CAS  Google Scholar 

  • Zhang F, Zhu Z, Yang X, Ran W, Shen Q (2013) Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere. Appl Soil Ecol 72:41–48. doi:10.1016/j.apsoil.2013.05.016

    Article  Google Scholar 

  • Zhao J, Ni T, Li Y, Xiong W, Ran W, Shen B, Shen Q, Zhang R (2014a) Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS One 9:e85301. doi:10.1371/journal.pone.0085301

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Zhang R, Xue C, Xun W, Sun L, Xu Y, Shen Q (2014b) Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb Ecol 67:443–453. doi:10.1007/s00248-013-0322-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Technology R&D Program of the Ministry of Science and Technology of China (2013BAD20B05 and L0201400202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Electronic supplementary material

Table S1

(DOCX 17 kb).

Fig. S1

Hierarchical cluster tree of bacterial (a) and fungal (b) communities. Pairwise Bray-Curtis dissimilarity of samples collected from different soil samples: CK, initial soil sample collected before planting and fertilization; CF, 100% chemical fertilizer; BF, 75% chemical fertilizer + bioorganic fertilizer; OF, 75% chemical fertilizer + organic fertilizer. (GIF 10 kb).

High resolution image (TIFF 266 kb).

Fig. S2

Rarefaction curves of bacterial (a) and fungal (b) communities based on observed OTUs at 3% distance for individual sample. CK, initial soil sample collected before planting and fertilization; CF, 100% chemical fertilizer; BF, 75% chemical fertilizer + bioorganic fertilizer; OF, 75% chemical fertilizer + organic fertilizer. (GIF 107 kb).

High resolution image (TIFF 2167 kb).

Fig. S3

Venn diagram of bacterial (a) and fungal (b) communities. CK, initial soil sample collected before planting and fertilization; CF, 100% chemical fertilizer; BF, 75% chemical fertilizer + bioorganic fertilizer; OF, 75% chemical fertilizer + organic fertilizer. (GIF 290 kb).

High resolution image (TIFF 5640 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, F., Pang, G., Li, RX. et al. Bioorganic fertilizer maintains a more stable soil microbiome than chemical fertilizer for monocropping. Biol Fertil Soils 53, 861–872 (2017). https://doi.org/10.1007/s00374-017-1216-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-017-1216-y

Keywords

Navigation