Skip to main content
Log in

Population dynamics and ecology of ciliates (Protozoa, Ciliophora) in an anoxic rice field soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Wetland rice fields cover 1.46 million km2 globally; the flooded soil of these fields is largely anoxic. While biogeochemistry and microbiology have been studied in detail, the microbial loop and especially the dynamics and function of ciliates are largely unknown. We used anoxic microcosms prepared with soil from an Italian rice field and recorded species composition, abundance and volume of ciliates together with numbers, volume and size distribution of bacteria. Ciliates were the dominating protists observed in the microcosms, but could be outnumbered by flagellates if the soil was amended with rice straw. The number of ciliate taxa was 23. Metopus species were dominant, but 16 of the species recorded in the anoxic soil were facultative anaerobes. Another 29 species were found in accompanying experiments that included the oxic soil surface. Total abundance in the anoxic soil was on average 110 cells g−1 dry weight and comparable to that of other soils. The population of ciliates declined around 30 days after flooding, but recovered later. The period before the population declined was characterized by a rapid species turnover, many facultative anaerobes and large species. After recovery, the average cell size was much smaller, but even then a facultative anaerobe, Plagiacampa pentadactyla , was common. About 90% of all species were bacteriovores while the others—mainly Gymnostomatidae—were predators. Grazing ciliates may have controlled bacteria during the first 5 days after flooding, as could be shown by a negative correlation between the respective volumes and by the size spectra of the bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Azam F, Fenchel T, Field JG, Gray JS, Meyerreil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Google Scholar 

  • Babiuk LA, Paul EA (1970) The use of fluorescein isothiocyanate in the determination of the bacterial biomass of grassland soil. Can J Microbiol 16:57–62

    Google Scholar 

  • Berger H (1999) Monograph of the Oxytrichidae (Ciliophora, Hypotrichia). Kluwer, Dordrecht

  • Berger H, Foissner W, Adam H (1984) taxonomy biometry and morphogenesis of some soil ciliates Protozoa Ciliophora. Zool Jahrb Syst Oekol Geogr Tiers 111:339–367

    Google Scholar 

  • Bernard C, Fenchel T (1996) Some microaerobic ciliates are facultative anaerobes. Eur J Protistol 32:293–297

    Google Scholar 

  • Bick H (1972) Ciliated Protozoa; an illustrated guide to the species used as biological indicators in freshwater biology. World Health Organisation, Geneva

  • Bonkowski M (2002) Protozoa and plant growth: trophic links and mutualism. Eur J Protistol 37:363–365

    Google Scholar 

  • Clarholm M (1994) The microbial loop in soil. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. BSSS, Wiley-Sayce, New York, pp 221–230

  • Conrad R, Frenzel P (2002) Flooded soils. In: Britton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 1316–1333

  • Eigner P (2001) Key to the species of the Hypotrichida (Protozoa, Ciliophora). http://members.nextra.at/p.eigner/CD.html

  • Eisenmann H, Harms H, Meckenstock R, Meyer EI, Zehnder AJB (1998) Grazing of a Tetrahymena sp. on adhered bacteria in percolated columns monitored by in situ hybridization with fluorescent oligonucleotide probes. Appl Environ Microbiol 64:1264–1269

    CAS  PubMed  Google Scholar 

  • Ekelund F, Rønn R (1994) Notes on Protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol Rev 15:321–353

    Article  CAS  PubMed  Google Scholar 

  • Esteban G, Fenchel T, Finlay BJ (1995) Diversity of free-living morphospecies in the ciliate genus Metopus. Arch Protistenkd 146:137–164

    Google Scholar 

  • FAOSTAT (2003) http://apps.fao.org/default.html

  • Fenchel T (1969) The ecology of marine micro benthos. IV. Structure and function of the benthic ecosystem its chemical and physical factors and the micro fauna communities with special reference to the ciliated Protozoa. Ophelia 6:1–182

    Google Scholar 

  • Fenchel T, Finlay BJ (1990) Anaerobic free-living Protozoa—growth efficiencies and the structure of anaerobic communities. FEMS Microbiol Ecol 74:269–275

    Article  Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution on anoxic worlds. In: May RS, Harvey HH (eds) Oxford series in ecology and evolution. Oxford University Press, Oxford

  • Finlay BJ, Black HIJ, Brown S, Clarke KJ, Esteban GF, Hindle RM, Olmo JL, Rollett A, Vickerman K (2000) Estimating the growth potential of the soil protozoan community. Protist 151:69–80

    CAS  Google Scholar 

  • Foissner W (1987) Soil Protozoa: fundamental problems, ecological significance, ciliates and testaceans, bioindicators and guide to the literature. In: Corliss JO, Patterson DJ (eds) Progress in protistology. Biopress, Bristol, pp 69–212

  • Foissner W (1991) Basic light and scanning electron-microscopic methods for taxonomic studies of ciliated protozoa. Eur J Protistol 27:313–330

    Google Scholar 

  • Foissner W (1993) Colpodea (Ciliophora). Fischer, Stuttgart

  • Foissner W (1997a) Protozoa as bioindicators in agroecosystems, with emphasis on farming practices, biocides, and biodiversity. Agric Ecosyst Environ 62:93–103

    Article  Google Scholar 

  • Foissner W (1997b) Soil ciliates (Protozoa: Ciliophora) from evergreen rain forests of Australia, South America and Costa Rica: diversity and description of new species. Biol Fertil Soils 25:317–339

    Article  Google Scholar 

  • Foissner W (1998) An updated compilation of world soil ciliates (Protozoa, Ciliophora), with ecological notes, new records, and descriptions of new species. Eur J Protistol 34:195–235

    Google Scholar 

  • Foissner W, Blatterer H, Berger H, Kohmann F (1991) Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems, Band I. Cyrtophorida, Oligotrichida, Hypotrichia, Colpodea. Informationsberichte des Bayrischen Landesamtes für Wasserwirtschaft, München

  • Foissner W, Blatterer H, Kohmann F (1992) Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems, Band II. Peritrichia, Heterotrichida, Odontostomatida. Informationsberichte des Bayrischen Landesamtes für Wasserwirtschaft, München

  • Foissner W, Blatterer H, Kohmann F (1994) Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems, Band III. Hymenostomata, Prostomatida, Nassulida. Informationsberichte des Bayrischen Landesamtes für Wasserwirtschaft, München

  • Foissner W, Blatterer H, Berger H, Kohmann F (1995) Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems. Band IV. Gymnostomatea, Loxodes, Suctoria. Informationsberichte des Bayrischen Landesamtes für Wasserwirtschaft, München

  • Foissner W, Berger H, Schaumburg J (1999) Identification and ecology of limnetic plankton ciliates. Bayerisches Landesamt für Wasserwirtschaft, München

  • Foissner W, Agatha S, Berger H (2002) Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha Region and the Namib Desert. Oberösterreichisches Landesmuseum Linz, Linz

  • Frenzel P, Thebrath B, Conrad R (1990) Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance). FEMS Microbiol Ecol 73:149–158

    Article  CAS  Google Scholar 

  • Frenzel P, Bosse U, Janssen PH (1999) Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in the rooted soil. Soil Biol Biochem 31:421–430

    Article  CAS  Google Scholar 

  • Glissmann K, Conrad R (2000) Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil. FEMS Microbiol Ecol 31:117–126

    PubMed  Google Scholar 

  • Güde H (1979) Grazing by Protozoa as selection factor for activated-sludge bacteria. Microb Ecol 5:225–237

    Google Scholar 

  • Hahn MW, Höfle MG (2001) Grazing of Protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol 35:113–121

    Article  CAS  PubMed  Google Scholar 

  • Heckman CW (1979) Rice field ecology in northeastern Thailand: the effect of wet and dry seasons on a cultivated aquatic ecosystem. Junk, The Hague

    Google Scholar 

  • Kahl A (1930) Urtiere oder Protozoa. I. Wimperntiere oder Ciliata (Infusoria). 1. Allgemeiner Teil und Prostomata. In: Dahl F (ed) Tierwelt Dtl 18:1–180

  • Kahl A (1931) Urtiere oder Protozoa. I. Wimperntiere oder Ciliata (Infusoria). 2. Holotricha außer den im 1 Teil behandelten Prostomata. In: Dahl F (ed) Tierwelt Dtl 21:181–398

  • Kahl A (1932) Urtiere oder Protozoa. I. Wimperntiere oder Ciliata (Infusoria). 3. Spirotricha. In: Dahl F (ed) Tierwelt Dtl 25:399–650

  • Kahl A (1935) Urtiere oder Protozoa. I. Wimperntiere oder Ciliata (Infusoria). 4. Peritricha und Chonotricha. In: Dahl F (ed) Tierwelt Dtl 30:651–886

  • Krüger M, Frenzel P, Conrad R (2001) Microbial processes influencing methane emission from rice fields. Global Change Biol 7:49–63

    Article  Google Scholar 

  • Lüders T, Friedrich M (2000) Archaeal population dynamics during sequential reduction processes in rice field soil. Appl Environ Microbiol 66:2732–2742

    PubMed  Google Scholar 

  • Madoni P (1987) Colonization seasonal succession and productivity of the ciliated protozoa populations in a rice field ecosystem. Riv Idrobiol 26:81–96

    Google Scholar 

  • Rønn R, McCaig AE, Griffiths BS, Prosser JI (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68:6094–6105

    Article  PubMed  Google Scholar 

  • Sexstone AJ, Revsbech NP, Parkin TB, Tiedje JM (1985) Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci Soc Am J 49:645–651

    CAS  Google Scholar 

  • Stumm CK, Zwart KB (1986) Symbiosis of Protozoa with hydrogen-utilizing methanogens. Microbiol Sci 3:100–105

    CAS  PubMed  Google Scholar 

  • Tiedje JM, Sexstone AJ, Parkin TB, Revsbech NP, Shelton DR (1984) Anaerobic processes in soil. Plant Soil 76: 197–212

    CAS  Google Scholar 

  • Wachinger G, Fiedler S, Zepp K, Gattinger A, Sommer M, Roth K (2000) Variability of soil methane production on the micro-scale: spatial association with hot spots of organic material and Archaeal populations. Soil Biol Biochem 32:1121–1130

    Article  CAS  Google Scholar 

  • Yao H, Conrad R, Wassmann R, Neue HU (1999) Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 47:269–295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG) within the SFB395 Interactions, Adaptations, and Catalytic Capabilities of Soil Microorganisms. The authors would like to thank Stephan Stubner for help with confocal laser scanning microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Frenzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, M.V.J., Frenzel, P. Population dynamics and ecology of ciliates (Protozoa, Ciliophora) in an anoxic rice field soil. Biol Fertil Soils 38, 245–252 (2003). https://doi.org/10.1007/s00374-003-0644-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-003-0644-z

Keywords

Navigation