Skip to main content
Log in

Cross-Intersecting Families of Vectors

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Given a sequence of positive integers \(p=(p_1,\dots ,p_n)\), let \(S_p\) denote the family of all sequences of positive integers \(x=(x_1,\ldots ,x_n)\) such that \(x_i\le p_i\) for all \(i\). Two families of sequences (or vectors), \(A,B\subseteq S_p\), are said to be \(r\) -cross-intersecting if no matter how we select \(x\in A\) and \(y\in B\), there are at least \(r\) distinct indices \(i\) such that \(x_i=y_i\). We determine the maximum value of \(|A|\cdot |B|\) over all pairs of \(r\)-cross-intersecting families and characterize the extremal pairs for \(r\ge 1\), provided that \(\min p_i>r+1\). The case \(\min p_i\le r+1\) is quite different. For this case, we have a conjecture, which we can verify under additional assumptions. Our results generalize and strengthen several previous results by Berge, Borg, Frankl, Füredi, Livingston, Moon, and Tokushige, and answers a question of Zhang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlswede, R., Khachatrian, L.H.: The diametric theorem in Hamming spaces-optimal anticodes. Adv. Appl. Math. 20, 429–449 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berge, C.: Nombres de coloration de l’hypegraphe \(h\)-parti complet, Hypergraph Seminar, Lecture Notes in Mathematics, vol. 411. Springer, Heidelberg, pp. 13–20 (1974)

  3. Bollobás, B.: Combinatorics. Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  4. Borg, P.: Intersecting and cross-intersecting families of labeled sets. Electron. J. Combin. 15, N9 (2008)

    MathSciNet  Google Scholar 

  5. Borg, P.: Cross-intersecting integer sequences (preprint). arXiv:1212.6955

  6. Deza, M., Frankl, P.: Erdős-Ko-Rado theorem-22 years later. SIAM J. Algebr. Discrete Methods 4, 419–431 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Erdős, P., Ko, C., Rado, R.: Intersection theorems for systems of finite sets. Q. J. Math. Oxford Ser. 2(12), 313–318 (1961)

    Article  Google Scholar 

  8. Frankl, P.: Extremal set systems. In: Graham, R., et al. (eds.) Handbook of Combinatorics. Elsevier, Amsterdam, pp. 1293–1329 (1995)

  9. Frankl, P., Füredi, Z.: The Erdős-Ko-Rado theorem for integer sequences. SIAM J. Algebr. Discrete Methods 1, 376–381 (1980)

    Article  MATH  Google Scholar 

  10. Frankl, P., Lee, S.J., Siggers, M., Tokushige, N.: An Erdős-Ko-Rado theorem for cross-intersecting families. J. Combin. Theory Ser. A 128, 207–249 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Frankl, P., Tokushige, N.: The Erdős-Ko-Rado theorem for integer sequences. Combinatorica 19, 55–63 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Greene, C., Kleitman, D.J.: Proof techniques in the ordered sets. In: Studies in Combinatorics, Math. Assn. America, Washington DC, pp. 22–79 (1978)

  13. Hilton, A.J.W.: An intersection theorem for a collection of families of subsets of a finite set. J. Lond. Math. Soc. 2, 369–384 (1977)

    Article  Google Scholar 

  14. Katona, G.O.H.: A simple proof of the Erdős-Ko-Rado theorem. J. Combin. Theory Ser. B 13, 183–184 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  15. Livingston, M.L.: An ordered version of the Erdős-Ko-Rado theorem. J. Combin. Theory Ser. A 26, 162–165 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Moon, A.: An analogue of the Erdős-Ko-Rado theorem for the Hamming schemes H(n, q). J. Combin. Theory Ser. A 32, 386–390 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pyber, L.: A new generalization of the Erdős-Rado-Ko theorem. J. Combin. Theory Ser. A 43, 85–90 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Stanton, D.: Some Erdős-Ko-Rado theorems for Chevalley groups. SIAM J. Algebr. Discrete Methods 1, 160–163 (1980)

    Article  MATH  Google Scholar 

  19. Tokushige, N.: Cross \(t\)-intersecting integer sequences from weighted Erdős-Ko-Rado. Combin. Probab. Comput. 22, 622–637 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, H.: Cross-intersecting families of labeled sets. Electron. J. Combin. 20(1), P17 (2013)

    Google Scholar 

Download references

Acknowledgments

We are indebted to G. O. H. Katona, R. Radoičić, and D. Scheder for their valuable remarks, and to an anonymous referee for calling our attention to the manuscript of Borg [5].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Pach.

Additional information

J. Pach is supported by OTKA under ERC projects GraDR and ComPoSe 10-EuroGIGA-OP-003, and by Swiss National Science Foundation Grants 200020-144531 and 200021-137574. G. Tardos is supported by OTKA grant NN-102029, the “Lendület” project of the Hungarian Academy of Sciences and by EPFL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pach, J., Tardos, G. Cross-Intersecting Families of Vectors. Graphs and Combinatorics 31, 477–495 (2015). https://doi.org/10.1007/s00373-015-1551-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1551-4

Keywords

Navigation