Skip to main content
Log in

DCBFusion: an infrared and visible image fusion method through detail enhancement, contrast reserve and brightness balance

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Due to the complementary nature of visible and infrared images, they are widely used in image fusion to generate fused images containing more comprehensive information. Although existing fusion methods have achieved good results, there are some problems. In some cases, the features of an image are affected by a shot from another modality, which leads to the problem of background contamination and missing information. To solve these problems, we designed a visible and infrared image fusion network starting from three key factors that affect structural similarity. Our fusion network can avoid these problems through detail enhancement, contrast preservation, and luminance balancing. Through the cross-stage feature extraction and multi-scale feature enhancement modules achieve detail enhancement. The complementary information fusion module finds and fuses complementary information from different images to achieve contrast preservation. The loss function performs luminance balancing. Comparison and generalization experiments on several other public datasets show that our network effectively avoids background contamination and information loss and achieves outstanding results in both quantitative and qualitative aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Zhang, H., Xu, H., Tian, X., Jiang, J., Ma, J.: Image fusion meets deep learning: a survey and perspective. Inf. Fusion 76, 323–336 (2021). https://doi.org/10.1016/j.inffus.2021.06.008

    Article  Google Scholar 

  2. Ha, Q., Watanabe, K., Karasawa, T., Ushiku, Y., Harada, T.: MFNet: towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes, In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp. 5108–5115 (2017)

  3. Zhou, L., Chen, Z.: Illumination-aware window transformer for RGBT modality fusion. J. Vis. Commun. Image Represent. 90, 103725 (2023). https://doi.org/10.1016/j.jvcir.2022.103725

    Article  Google Scholar 

  4. Lu, Y. et al.: Cross-modality person re-identification with shared-specific feature transfer, Presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13379–13389, (2020). Accessed: Mar 29, 2023. [Online]. Available: https://openaccess.thecvf.com/content_CVPR_2020/html/Lu_Cross-Modality_Person_Re-Identification_With_Shared-Specific_Feature_Transfer_CVPR_2020_paper.html

  5. Tang, Q., Yan, P., Sun, W.: Visible-infrared person re-identification employing style-supervision and content-supervision. Vis. Comput. (2023). https://doi.org/10.1007/s00371-023-02929-4

    Article  Google Scholar 

  6. Guo, C., Yang, D., Li, C., Song, P.: Dual Siamese network for RGBT tracking via fusing predicted position maps. Vis. Comput. 38(7), 2555–2567 (2022). https://doi.org/10.1007/s00371-021-02131-4

    Article  Google Scholar 

  7. Zhang, J., Huang, H., Jin, X., Kuang, L.-D., Zhang, J.: Siamese visual tracking based on criss-cross attention and improved head network. Multimed. Tools Appl. (2023). https://doi.org/10.1007/s11042-023-15429-3

    Article  Google Scholar 

  8. Wang, B., Zhang, F., Zhao, Y.: LCH: fast RGB-D salient object detection on CPU via lightweight convolutional network with hybrid knowledge distillation. Vis. Comput. (2023). https://doi.org/10.1007/s00371-023-02898-8

    Article  Google Scholar 

  9. Zhang, Y., Wang, H., Yang, G., Zhang, J., Gong, C., Wang, Y.: CSNet: a ConvNeXt-based Siamese network for RGB-D salient object detection. Vis. Comput. (2023). https://doi.org/10.1007/s00371-023-02887-x

    Article  Google Scholar 

  10. Ren, L., Pan, Z., Cao, J., Zhang, H., Wang, H.: Infrared and visible image fusion based on edge-preserving guided filter and infrared feature decomposition. Signal Process. 186, 108108 (2021). https://doi.org/10.1016/j.sigpro.2021.108108

    Article  Google Scholar 

  11. Lu, R., Gao, F., Yang, X., Fan, J., Li, D.: A novel infrared and visible image fusion method based on multi-level saliency integration. Vis. Comput. 39(6), 2321–2335 (2023). https://doi.org/10.1007/s00371-022-02438-w

    Article  Google Scholar 

  12. Yang, Y., Zhang, Y., Huang, S., Zuo, Y., Sun, J.: Infrared and visible image fusion using visual saliency sparse representation and detail injection model. IEEE Trans. Instrum. Meas. 70, 1–15 (2021). https://doi.org/10.1109/TIM.2020.3011766

    Article  Google Scholar 

  13. Zhang, C., Feng, Z.: Infrared-visible image fusion using accelerated convergent convolutional dictionary learning. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-021-06380-2

    Article  Google Scholar 

  14. Rasti, B., Ghamisi, P.: Remote sensing image classification using subspace sensor fusion. Inf. Fusion 64, 121–130 (2020). https://doi.org/10.1016/j.inffus.2020.07.002

    Article  Google Scholar 

  15. Li, H., Wu, X.-J.: Infrared and visible image fusion using latent low-rank representation, ArXiv180408992 Cs, Jan (2022), Accessed: May 05, 2022. [Online]. Available: http://arxiv.org/abs/1804.08992

  16. Luo, H., Hou, R., Qi, W.: A novel infrared and visible image fusion using low-rank representation and simplified dual channel pulse coupled neural network, In: Proceedings of the 2019 international conference on artificial intelligence and computer science, Wuhan Hubei China: ACM, pp. 583–589, (2019). https://doi.org/10.1145/3349341.3349472

  17. Liu, G., et al.: Infrared and visible image fusion through hybrid curvature filtering image decomposition. Infrared Phys. Technol. 120, 103938 (2022). https://doi.org/10.1016/j.infrared.2021.103938

    Article  Google Scholar 

  18. Liu, L., Song, M., Peng, Y., Li, J.: A novel fusion framework of infrared and visible images based on RLNSST and guided filter. Infrared Phys. Technol. 100, 99–108 (2019). https://doi.org/10.1016/j.infrared.2019.05.019

    Article  Google Scholar 

  19. Li, H., Wu, X.-J.: DenseFuse: a fusion approach to infrared and visible images. IEEE Trans. Image Process. 28(5), 2614–2623 (2019). https://doi.org/10.1109/TIP.2018.2887342

    Article  MathSciNet  Google Scholar 

  20. Ma, J., Tang, L., Xu, M., Zhang, H., Xiao, G.: STDFusionNet: an infrared and visible image fusion network based on salient target detection. IEEE Trans. Instrum. Meas. 70, 1–13 (2021). https://doi.org/10.1109/TIM.2021.3075747

    Article  Google Scholar 

  21. Liu, J. et al.: Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection, In: 2022 IEEE/CVF conference on computer vision and pattern recognition (CVPR), New Orleans, LA, USA: IEEE, pp. 5792–5801, (2022). https://doi.org/10.1109/CVPR52688.2022.00571.

  22. Ma, J., Zhang, H., Shao, Z., Liang, P., Xu, H.: GANMcC: a generative adversarial network with multiclassification constraints for infrared and visible image fusion. IEEE Trans. Instrum. Meas. 70, 1–14 (2021). https://doi.org/10.1109/TIM.2020.3038013

    Article  Google Scholar 

  23. Wang, Z., Wu, Y., Wang, J., Xu, J., Shao, W.: Res2Fusion: infrared and visible image fusion based on dense res2net and double nonlocal attention models. IEEE Trans. Instrum. Meas. 71, 1–12 (2022). https://doi.org/10.1109/TIM.2021.3139654

    Article  Google Scholar 

  24. Tang, L., Yuan, J., Ma, J.: Image fusion in the loop of high-level vision tasks: a semantic-aware real-time infrared and visible image fusion network. Inf. Fusion 82, 28–42 (2022). https://doi.org/10.1016/j.inffus.2021.12.004

    Article  Google Scholar 

  25. Chen, Y., Xia, R., Zou, K., Yang, K.: RNON: image inpainting via repair network and optimization network. Int. J. Mach. Learn. Cybern. 14(9), 2945–2961 (2023). https://doi.org/10.1007/s13042-023-01811-y

    Article  Google Scholar 

  26. Chen, Y., Xia, R., Zou, K., Yang, K.: FFTI: image inpainting algorithm via features fusion and two-steps inpainting. J. Vis. Commun. Image Represent. 91, 103776 (2023). https://doi.org/10.1016/j.jvcir.2023.103776

    Article  Google Scholar 

  27. Chen, Y., Xia, R., Yang, K., Zou, K.: DARGS: image inpainting algorithm via deep attention residuals group and semantics. J. King Saud Univ. Comput. Inf. Sci. 35(6), 101567 (2023). https://doi.org/10.1016/j.jksuci.2023.101567

    Article  Google Scholar 

  28. Wang, L., Koniusz, P., Huynh, D.: Hallucinating IDT descriptors and I3D optical flow features for action recognition with CNNs, In: 2019 IEEE/CVF international conference on computer vision (ICCV), Seoul, Korea (South): IEEE, pp. 8697–8707, (2019). https://doi.org/10.1109/ICCV.2019.00879.

  29. Wang, L., Koniusz, P.: Self-supervising action recognition by statistical moment and subspace descriptors, In: Proceedings of the 29th ACM international conference on multimedia, in MM '21. New York, NY, USA: association for computing machinery, pp. 4324–4333, (2021). https://doi.org/10.1145/3474085.3475572.

  30. Wang, L., Huynh, D.Q., Mansour, M.R.: Loss switching fusion with similarity search for video classification. In: 2019 IEEE international conference on image processing (ICIP), pp. 974–978, (2019). https://doi.org/10.1109/ICIP.2019.8803051

  31. Lu, Y., et al.: TransFlow: transformer as flow learner, Presented at the proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 18063–18073, (2023)

  32. Cui, Y., Yan, L., Cao, Z., Liu, D.: TF-blender: temporal feature blender for video object detection, In: 2021 IEEE/CVF international conference on computer vision (ICCV), Montreal, QC, Canada: IEEE, pp. 8118–8127, (2021). https://doi.org/10.1109/ICCV48922.2021.00803

  33. Wang, W., Han, C., Zhou, T., Liu, D.: Visual recognition with deep nearest centroids. arXiv, Mar 14, 2023. Accessed: Sep 11, 2023. [Online]. Available: http://arxiv.org/abs/2209.07383

  34. Yan, L., et al.: GL-RG: global-local representation granularity for video captioning, In: proceedings of the thirty-first international joint conference on artificial intelligence, pp. 2769–2775, (2022). https://doi.org/10.24963/ijcai.2022/384

  35. Chen, Y., Xia, R., Yang, K., Zou, K.: MFFN: image super-resolution via multi-level features fusion network. Vis. Comput. (2023). https://doi.org/10.1007/s00371-023-02795-0

    Article  Google Scholar 

  36. Liu, D., Cui, Y., Yan, L., Mousas, C., Yang, B., Chen, Y.: DenserNet: weakly supervised visual localization using multi-scale feature aggregation. Proc. AAAI Conf. Artif. Intell. 35(7), 7 (2021). https://doi.org/10.1609/aaai.v35i7.16760

    Article  Google Scholar 

  37. Zhang, J., Zou, X., Kuang, L.-D., Wang, J., Sherratt, R.S., Yu, X.: CCTSDB 2021: a more comprehensive traffic sign detection benchmark. Hum. Centric Comput. Inf. Sci. 12, 16491 (2022)

    Google Scholar 

  38. Zhang, J., Zheng, Z., Xie, X., Gui, Y., Kim, G.-J.: ReYOLO: A traffic sign detector based on network reparameterization and features adaptive weighting. J. Ambient Intell. Smart Environ. 14(4), 317–334 (2022). https://doi.org/10.3233/AIS-220038

    Article  Google Scholar 

  39. Li, H., Wu, X.-J., Durrani, T.: NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models. IEEE Trans. Instrum. Meas. 69(12), 9645–9656 (2020). https://doi.org/10.1109/TIM.2020.3005230

    Article  Google Scholar 

  40. Wu, Y., Liu, J., Jiang, J., Fan, X.: Dual attention mechanisms with perceptual loss ensemble for infrared and visible image fusion, In: 2020 8th International Conference on Digital Home (ICDH), Dalian, China: IEEE, pp. 87–92 (2020). https://doi.org/10.1109/ICDH51081.2020.00023

  41. Nie, C., Zhou, D., Nie, R.: Edafuse: a encoder-decoder with atrous spatial pyramid network for infrared and visible image fusion. SSRN Electron. J. (2021). https://doi.org/10.2139/ssrn.3982278

    Article  Google Scholar 

  42. Zhang, Y., Liu, Y., Sun, P., Yan, H., Zhao, X., Zhang, L.: IFCNN: a general image fusion framework based on convolutional neural network. Inf. Fusion 54, 99–118 (2020). https://doi.org/10.1016/j.inffus.2019.07.011

    Article  Google Scholar 

  43. Li, Y., Wang, J., Miao, Z., Wang, J.: Unsupervised densely attention network for infrared and visible image fusion. Multimed. Tools Appl. 79(45–46), 34685–34696 (2020). https://doi.org/10.1007/s11042-020-09301-x

    Article  Google Scholar 

  44. Mustafa, H.T., Yang, J., Mustafa, H., Zareapoor, M.: Infrared and visible image fusion based on dilated residual attention network. Optik 224, 165409 (2020). https://doi.org/10.1016/j.ijleo.2020.165409

    Article  Google Scholar 

  45. Xu, H., Zhang, H., Ma, J.: Classification saliency-based rule for visible and infrared image fusion. IEEE Trans. Comput. Imaging 7, 824–836 (2021). https://doi.org/10.1109/TCI.2021.3100986

    Article  MathSciNet  Google Scholar 

  46. Ma, J., Yu, W., Liang, P., Li, C., Jiang, J.: FusionGAN: a generative adversarial network for infrared and visible image fusion. Inf. Fusion 48, 11–26 (2019). https://doi.org/10.1016/j.inffus.2018.09.004

    Article  Google Scholar 

  47. Ma, J., Xu, H., Jiang, J., Mei, X., Zhang, X.-P.: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans. Image Process. 29, 4980–4995 (2020). https://doi.org/10.1109/TIP.2020.2977573

    Article  MATH  Google Scholar 

  48. Xu, D., Wang, Y., Xu, S., Zhu, K., Zhang, N., Zhang, X.: Infrared and visible image fusion with a generative adversarial network and a residual network. Appl. Sci. 10(2), 554 (2020). https://doi.org/10.3390/app10020554

    Article  Google Scholar 

  49. Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s, Presented at the proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11976–11986, (2022)

  50. Wang, C.-Y., Mark Liao, H.-Y., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., Yeh, I.-H.: CSPNet: a new backbone that can enhance learning capability of CNN, In: 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Seattle, WA, USA: IEEE, pp. 1571–1580, (2020). https://doi.org/10.1109/CVPRW50498.2020.00203

  51. Kim, Y., Koh, Y.J., Lee, C., Kim, S., Kim, C.-S.: Dark image enhancement based onpairwise target contrast and multi-scale detail boosting, In: 2015 IEEE international conference on image processing (ICIP), pp. 1404–1408, (2015). https://doi.org/10.1109/ICIP.2015.7351031.

  52. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arXiv, May 11, 2017. Accessed: May 18, 2023. [Online]. Available: http://arxiv.org/abs/1606.00915

  53. Tang, L., Yuan, J., Zhang, H., Jiang, X., Ma, J.: PIAFusion: a progressive infrared and visible image fusion network based on illumination aware. Inf. Fusion 83–84, 79–92 (2022). https://doi.org/10.1016/j.inffus.2022.03.007

    Article  Google Scholar 

  54. Zhao, Z., Xu, S., Zhang, C., Liu, J., Li, P., Zhang, J.: DIDFuse: deep image decomposition for infrared and visible image fusion, In: proceedings of the twenty-ninth international joint conference on artificial intelligence, pp. 970–976, (2020). https://doi.org/10.24963/ijcai.2020/135

  55. Xu, H., Ma, J., Jiang, J., Guo, X., Ling, H.: U2Fusion: a unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 502–518 (2022). https://doi.org/10.1109/TPAMI.2020.3012548

    Article  Google Scholar 

  56. Li, H., Wu, X.-J., Kittler, J.: RFN-Nest: an end-to-end residual fusion network for infrared and visible images. Inf. Fusion 73, 72–86 (2021). https://doi.org/10.1016/j.inffus.2021.02.023

    Article  Google Scholar 

  57. Wang, D., Liu, J., Fan, X., Liu, R.: Unsupervised misaligned infrared and visible image fusion via cross-modality image generation and registration. arXiv, May 24, 2022. Accessed: Nov 18, 2022. [Online]. Available: http://arxiv.org/abs/2205.11876

  58. Luo, X., Fu, G., Yang, J., Cao, Y., Cao, Y.: Multi-modal image fusion via deep laplacian pyramid hybrid network. IEEE Trans. Circuits Syst. Video Technol. (2023). https://doi.org/10.1109/TCSVT.2023.3281462

    Article  Google Scholar 

  59. Rao, D., Xu, T., Wu, X.-J.: TGFuse: an infrared and visible image fusion approach based on transformer and generative adversarial network. IEEE Trans. Image Process. (2023). https://doi.org/10.1109/TIP.2023.3273451

    Article  Google Scholar 

  60. Cheng, C., Xu, T., Wu, X.-J.: MUFusion: a general unsupervised image fusion network based on memory unit. Inf. Fusion 92, 80–92 (2023). https://doi.org/10.1016/j.inffus.2022.11.010

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51805078), the Fundamental Research Funds for the Central Universities (N2103011), the Central Guidance on Local Science and Technology Development Fund (2022JH6/100100023), and the 111 Project (B16009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kechen Song or Yunhui Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Song, K., Man, Y. et al. DCBFusion: an infrared and visible image fusion method through detail enhancement, contrast reserve and brightness balance. Vis Comput (2023). https://doi.org/10.1007/s00371-023-03134-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-023-03134-z

Keywords

Navigation