Skip to main content
Log in

Determining in-plane material properties of square core cellular materials using computational homogenization technique

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Utilizing the multi-scale homogenization technique based on averaging theorems, three methodologies are proposed for determining equivalent (effective) in-plane properties of square-shaped core honeycombs. In this regard, two theoretical approaches based on strain energy density equivalency (SEDE) condition and Hook's law as well as a semi-empirical based method are employed. Purposefully two possible geometries of representative volume element (RVE) with related boundary conditions are investigated. Featuring as a fast estimation method, the constant boundary element method (CBEM) is utilized to solve the boundary integral form of equivalent stress and strain equations. The assessment of proposed methods is done for a typical material by comparing the results with the outputs of existing analytical and numerical methods. The obtained results demonstrate the capability of proposed relations in estimating the in-plane engineering constants for the wide range of elative densities where the previously published methods fail at high relative densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  2. Evans AG, Hutchinson JW, Ashby MF (1998) Multifunctionality of cellular metal systems. Prog Mater Sci 43(3):171–221

    Article  Google Scholar 

  3. Hohe J, Becker W (2001) A refined analysis of the effective elasticity tensor for general cellular sandwich cores. Int J Solids Struct 38:3689–3717

    Article  MATH  Google Scholar 

  4. Karakoc A, Freund J (2012) Experimental studies on mechanical properties of cellular structures using Nomex (R) honeycomb cores. Compos Struct 94:2017–2024

    Article  Google Scholar 

  5. Wadley H (2006) Multifunctional periodic cellular metals. Philos Trans Ser A Math Phys Eng Sci 364:31–68

    Google Scholar 

  6. Wang AJ, McDowell DL (2004) In-plane stiffness and yield strength of periodic metal honeycombs. J Eng Mater Technol 126(2):137–156

    Article  Google Scholar 

  7. Ju J, Summers JD, Ziegert J, Fadel G (2011) Design of honeycombs for modulus and yield strain in shear. J Eng Mater Technol 134(1):011002

    Article  Google Scholar 

  8. Cheng Q, Zhidong G, Siyuan J, Zengshan L (2017) A method of determining effective elastic properties of honeycomb cores based on equal strain energy. Chin J Aeron 30(2):766–779

    Article  Google Scholar 

  9. Balawi S, Abot JL (2008) A refined model for the effective in-plane elastic moduli of hexagonal honeycombs. Compos Struct 84(2):147–158

    Article  Google Scholar 

  10. Burton WS, Noor AK (1997) Assessment of continuum models for sandwich panel honeycomb cores. Comput Methods Appl Mech Eng 145(3):341–360

    Article  MATH  Google Scholar 

  11. Chen DH, Horii H, Ozaki S (2009) Analysis of in-plane elastic modulus for a hexagonal honeycomb core: analysis of young’s modulus and shear modulus. J Comput Sci Technol 3(1):1–12

    Article  Google Scholar 

  12. Gibson LJ, Ashby MF, Schajer GS, Robertson CI (1982) The mechanics of two-dimensional cellular materials. Proc R Soc Lond Ser A Math Phys Sci 382(1782):25–42

    Google Scholar 

  13. Alkhader M, Vural M (2008) Mechanical response of cellular solids: role of cellular topology and microstructural irregularity. Int J Eng Sci 46(10):1035–1051

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen C, Fleck NA (2002) Size effects in the constrained deformation of metallic foams. J Mech Phys Solids 50(5):955–977

    Article  MATH  Google Scholar 

  15. Mukhopadhyay T, Adhikari S (2016) Equivalent in-plane elastic properties of irregular honeycombs: an analytical approach. Int J Solids Struct 91:169–184

    Article  Google Scholar 

  16. Christensen RM (2000) Mechanics of cellular and other low-density materials. Int J Solids Struct 37(1):93–104

    Article  MathSciNet  MATH  Google Scholar 

  17. Hohe J, Becker W (2001) An energetic homogenisation procedure for the elastic properties of general cellular sandwich cores. Compos B Eng 32(3):185–197

    Article  Google Scholar 

  18. Malek S, Gibson L (2015) Effective elastic properties of periodic hexagonal honeycombs. Mech Mater 91:226–240

    Article  Google Scholar 

  19. Yazdanparast R, Rafiee R (2020) Developing a homogenization approach for estimation of in-plan effective elastic moduli of hexagonal honeycombs. Eng Anal Bound Elem 117:202–211

    Article  MathSciNet  MATH  Google Scholar 

  20. Talebi H, Silani M, Bordas SPA, Kerfriden P, Rabczuk T (2014) A computational library for multiscale modeling of material failure. Comput Mech 53:1047–1071

    Article  MathSciNet  Google Scholar 

  21. Budarapu PR, Gracie R, Yang S-W, Zhuang X, Rabczuk T (2014) Efficient coarse graining in multiscale modeling of fracture. Theor Appl Fract Mech 69:126–143

    Article  Google Scholar 

  22. Silani M, Ziaei-Rad S, Talebi H, Rabczuk T (2014) A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theor Appl Fract Mech 74(1):30–38

    Article  Google Scholar 

  23. Feyel F, Chaboche J-L (2000) FE multiscale approach for modeling the elastoviscoplastic behavior of long fiber SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330

    Article  MATH  Google Scholar 

  24. Talebi H, Silani M, Rabczuk T (2015) Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Adv Eng Softw 80:82–92

    Article  Google Scholar 

  25. Miller RE, Tadmor EB (2009) A unified framework and formance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model Simul Mater Sci Eng 17:053001

    Article  Google Scholar 

  26. Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T (2016) A software framework for probabilistic sensitivity analysis for computationally expensive model. Adv Eng Softw 100:19–31

    Article  Google Scholar 

  27. Hohe J, Hardenacke V (2012) Analysis of uncertainty effects due to microstructural disorder in cellular or porous materials. Int J Solids Struct 49:1009–1021

    Article  Google Scholar 

  28. Weaire D, Phelan R (1994) A counter-example to Kelvin’s conjecture on minimal surfaces. Philos Mag Lett 69(2):107–110

    Article  MATH  Google Scholar 

  29. Ijaz H, Saleem W (2017) Finite element analysis of bend test of sandwich structures using strain energy based homogenization method. Adv Mater Sci Eng 2017:10

    Article  Google Scholar 

  30. Wang YQ, Sun CJ, Sun XK, Pagano NJ (2002) Principles for recovering microstress in multi-level analysis; composite material: testing, design, and acceptance criteria. ASTM STP 1416. In: Zureick A, Nettles AT (eds) American Society for Testing and Material Iternational, West Conshohochen

  31. Huyse L, Maes MA (2001) Random field modeling of elastic properties using homogenization. J Eng Mech 127:27–36

    Google Scholar 

  32. Torquato S, Gibiansky LV, Silva MJ, Gibson LJ (1998) Effective mechanical and transport properties of cellular solids. Int J Mech Sci 40(1):71–82

    Article  MATH  Google Scholar 

  33. Nguyen VD, Noels L (2014) Computational homogenization of cellular materials. Int J Solids Struct 51(11):2183–2203

    Article  Google Scholar 

  34. Catapano A, Montemurro M (2014) A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I: homogenisation of core properties. Compos Struct 118:664–676

    Article  Google Scholar 

  35. Kapania RK, Soliman HE, Vasudeva S, Hughes O, Makhecha DP (2008) Static analysis of sandwich panels with square honeycomb core. AIAA J 46(3):627–634

    Article  Google Scholar 

  36. Khattab MM (2016) Effective properties of magneto-electro-elastic two-dimensional cellular solids, Department of Civil and Environmental Engineering. 2016, Colorado State University

  37. Katsikadelis J (2002) Boundary elements: theory and applications. Elsevier Science Ltd

  38. Dong CY (2006) Effective elastic properties of doubly periodic array of inclusions of various shapes by the boundary element method. Int J Solids Struct 43(25):7919–7938

    Article  MATH  Google Scholar 

  39. Liu YJ, Nishimura N, Otani Y, Takahashi T, Chen XL, Munakata H (2005) A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model. J Appl Mech 72(1):115–128

    Article  MATH  Google Scholar 

  40. Lukáš D, Of G, Zapletal J, Bouchala J (2019) A boundary element method for homogenization of periodic structures. Math Methods Appl Sci 43(3):1035–1052

    Article  MathSciNet  MATH  Google Scholar 

  41. Dong CY, Lo S, Cheung YK (2003) Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium. Comput Methods Appl Mech Eng 192:683–696

    Article  MATH  Google Scholar 

  42. Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sect A 65(5):349–354

    Article  Google Scholar 

  43. Murshed MR, Ranganathan SI (2017) Hill-Mandel condition and bounds on lower symmetry elastic crystals. Mech Res Commun 81:7–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roham Rafiee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdanparast, R., Rafiee, R. Determining in-plane material properties of square core cellular materials using computational homogenization technique. Engineering with Computers 39, 373–386 (2023). https://doi.org/10.1007/s00366-021-01562-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01562-w

Keywords

Navigation