Skip to main content
Log in

Solving complex Sylvester matrix equation by accelerated double-step scale splitting (ADSS) method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Accelerated double-step scale splitting (ADSS) approach is an efficient and fast method for solving a class of large complex symmetric linear equations which has been recently presented by parameterized DSS method. In this paper, we will apply ADSS scheme for solving complex Sylvester matrix equation. It will be proved analytically that the ADSS iteration method is faster than the DSS iteration method. Moreover, we minimize the upper bound of the spectral radius of iteration matrix. Finally, some test problems will be given and results will be reported to support the theoretical claims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson BDO, Agathoklis P, Jury EI, Mansour M (1986) Stability and the matrix Lyapunov equation for discrete 2-dimensional systems. IEEE Trans Circ Syst 33(3):261–267

    MathSciNet  MATH  Google Scholar 

  2. Bai Z-Z (2011) On Hermitian and skew-Hermitian spliting iteration methods for continuous Sylvester equations. J Comput Math 29:185–198

    MathSciNet  MATH  Google Scholar 

  3. Bai Z-Z, Benzi M, Chen F (2010) Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87(3–4):93–111

    MathSciNet  MATH  Google Scholar 

  4. Bai Z-Z, Benzi M, Chen F (2011) On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer Algorithms 56(2):297–317

    MathSciNet  MATH  Google Scholar 

  5. Bai Z-Z, Golub GH, Ng MK (2003) On Hermitian and skew-Hermitian spliting iteration methods for non-Hermitian positive definite linear systems. SIAM J Matrix Anal Appl 24(3):603–626

    MathSciNet  MATH  Google Scholar 

  6. Bai Z-Z, Golub GH, Ng MK (2008) On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. Linear Algebra Appl 428(2–3):413–440

    MathSciNet  MATH  Google Scholar 

  7. Bai Z-Z, Guo X-X, Xu S-F (2006) Alternately linearized implicit iteration methods for the minimal non-negative solutions of non-symmetric algebraic Riccati equations. Numer Linear Algebra Appl 13(8):655–674

    MathSciNet  MATH  Google Scholar 

  8. Bartels RH, Stewart GW (1972) Solution of the matrix equation \( AX+XB=C \): Algorithm 432. Commun ACM 15(9):820–826

    MATH  Google Scholar 

  9. Bini DA, Iannazzo B, Meini B (2011) Numerical solution of algebraic Riccati equations. SIAM, Philadelphia

    MATH  Google Scholar 

  10. Calvetti D, Reichel L (1996) Application of ADI iterative methods to the restoration of noisy images. SIAM J Matrix Anal Appl 17(1):165–186

    MathSciNet  MATH  Google Scholar 

  11. Dehghan M, Hajarian M (2009) On the reflexive solutions of the matrix equation \(AXB + CYD = E\). Bull Korean Math Soc 46(3):511–519

    MathSciNet  MATH  Google Scholar 

  12. Dehghan M, Hajarian M (2010) On the reflexive and anti-reflexive solutions of the generalized coupled Sylvester matrix equations. Int J Syst Sci 41(6):607–625

    MATH  Google Scholar 

  13. Dehghan M, Hajarian M (2010) The general coupled matrix equations over generalized bisymmetric matrices. Linear Algebra Appl 432(6):1531–1552

    MathSciNet  MATH  Google Scholar 

  14. Dehghan M, Shirilord A (2019) Accelerated double-step scale splitting iteration method for solving a class of complex symmetric linear systems. Numer Algorithms. https://doi.org/10.1007/s11075-019-00682-1

    Article  MATH  Google Scholar 

  15. Dehghan M, Shirilord A (2019) A generalized modified Hermitian and skew-Hermitian splitting (GMHSS) method for solving complex Sylvester matrix equation. Appl Math Comput 348:632–651

    MathSciNet  MATH  Google Scholar 

  16. Dehghan M, Shirilord A (2019) The double-step scale splitting method for solving complex Sylvester matrix equation. Comput Appl Math 38:146. https://doi.org/10.1007/s40314-019-0921-6(Journal published by Springer)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ding F, Liu P-X, Ding J (2008) Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle. Appl Math Comput 197(1):41–50

    MathSciNet  MATH  Google Scholar 

  18. Ding J, Liu Y-J, Ding F (2010) Iterative solutions to matrix equations of the form \( A_iXB_i = F_i \). Comput Math Appl 59(11):3500–3507

    MathSciNet  MATH  Google Scholar 

  19. Ding F, Zhang H (2014) Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems. IET Control Theory Appl 8(15):1588–1595

    MathSciNet  Google Scholar 

  20. Dong Y, Gu C (2017) On PMHSS iteration methods for Sylvester equations. J Comput Math 35(5):600–619

    MathSciNet  MATH  Google Scholar 

  21. Evans DJ, Galligani E (1994) A parallel additive preconditioner for conjugate gradient method for \(AX+XB=C\). Parallel Comput 20(7):1055–1064

    MathSciNet  MATH  Google Scholar 

  22. Golub GH, Nash SG, Van Loan CF (1979) A Hessenberg–Schur method for the problem \(AX +XB = C\). IEEE Trans Automat Control 24(6):909–913

    MathSciNet  MATH  Google Scholar 

  23. Hezari D, Salkuyeh DK, Edalatpour V (2016) A new iterative method for solving a class of complex symmetric system of linear equations. Numer Algorithms 73:927–955

    MathSciNet  MATH  Google Scholar 

  24. Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Ilic MD (1989) New approaches to voltage monitoring and control. IEEE Control Syst Mag 9(1):5–11

    Google Scholar 

  26. Lancaster P, Rodman L (1995) Algebraic Riccati equations. The Clarendon Press, Oxford and New York

    MATH  Google Scholar 

  27. Lancaster P, Tismenetsky M (1985) The theory of matrices, 2nd edn. Academic Press, Orlando

    MATH  Google Scholar 

  28. Liao A-P, Bai Z-Z (2002) Least-squares solutions of the matrix equation \(A^TXA=D\) in bisymmetric matrix set. Math Numer Sinica 24(1):9–20

    MathSciNet  Google Scholar 

  29. Liao A-P, Bai Z-Z (2003) Least-squares solution of \(AXB=D\) over symmetric positive semidefinite matrices \(X\). J Comput Math 21:175–182

    MathSciNet  MATH  Google Scholar 

  30. Liao A-P, Bai Z-Z, Lei Y (2005) Best approximate solution of matrix equation \(AXB+ CYD= E\). SIAM J Matrix Anal Appl 27(3):675–688

    MathSciNet  MATH  Google Scholar 

  31. Niu Q, Wang X, Lu L-Z (2011) A relaxed gradient based algorithm for solving Sylvester equations. Asian J Control 13(3):461–464

    MathSciNet  MATH  Google Scholar 

  32. Obinata G, Anderson BDO (2001) Model reduction for control system design. Springer, Berlin and London

    MATH  Google Scholar 

  33. Petersen IR (1987) Disturbance attenuation and \( H^{\infty } \)-optimization: a design method based on the algebraic Riccati equation. IEEE Trans Automat Control 32(5):427–429

    MathSciNet  MATH  Google Scholar 

  34. Ramadan MA, Abdel Naby MA, Bayoumi AM (2015) Explicit and iterative Methods for solving the matrix equation \( AV + BW = EVF+C\). Asian J Control 17(3):1070–1080

    MathSciNet  MATH  Google Scholar 

  35. Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Comput 7(3):856–869

    MathSciNet  MATH  Google Scholar 

  36. Salkuyeh DK, Siahkolaei TS (2018) Two-parameter TSCSP method for solving complex symmetric system of linear equations. Calcolo. https://doi.org/10.1007/s10092-018-0252-9

    Article  MathSciNet  MATH  Google Scholar 

  37. Smith RA (1968) Matrix equation \(XA+BX=C\). SIAM J Appl Math 16(1):198–201

    MathSciNet  MATH  Google Scholar 

  38. Starke G, Niethammer W (1991) SOR for \( AX-XB = C \). Linear Algebra Appl 15:355–375

    MathSciNet  MATH  Google Scholar 

  39. Van der Schaft A (2000) \( L_2 \)-Gain and passivity techniques in non-linear control, 2nd edn. Springer, London

    Google Scholar 

  40. Wang Q-W, -He ZH (2013) A system of matrix equations and its applications. Sci China Math 56(9):1795–1820

    MathSciNet  MATH  Google Scholar 

  41. Xie L, Ding J, Ding F (2009) Gradient based iterative solutions for general linear matrix equations. Comput Math Appl 58(7):1441–1448

    MathSciNet  MATH  Google Scholar 

  42. Xie L, Liu Y, Yang H (2010) Gradient based and least squares based iterative algorithms for matrix equations \( AXB + CX^TD = F \). Appl Math Comput 217(5):2191–2199

    MathSciNet  MATH  Google Scholar 

  43. Xu G-P, Wei M-S, Zheng D-S (1998) On solutions of matrix equation \(AXB+CYD=F\). Linear Algebra Appl 279(1–3):93–109

    MathSciNet  MATH  Google Scholar 

  44. Yuan S-F, Wang Q-W, Zhang X (2013) Least squares problem for the quaternion matrix equation \( AXB+CYD=E \) over different constrained matrices. Intern J Comput Math 90(3):565–576

    MathSciNet  MATH  Google Scholar 

  45. Zhang H, Ding F (2014) A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for coupled Sylvester matrix equations. J FRANKLIN I 351(1):340–357

    MathSciNet  MATH  Google Scholar 

  46. Zhang H, Ding F (2016) Iterative algorithms for \( X+A^TX^{-1}A=I \) by using the hierarchical identification principle. J FRANKLIN I 353(5):1132–1146

    MATH  Google Scholar 

  47. Zheng Z, Huang F-L, Peng Y-C (2017) Double-step scale splitting iteration method for a class of complex symmetric linear systems. Appl Math Lett 73:91–97

    MathSciNet  MATH  Google Scholar 

  48. Zhou D, Chen G, Cai Q (2015) On modified HSS iteration methods for continuous Sylvester equation. Appl Math Comput 263:84–93

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank both anonymous reviewers for careful reading and valuable comments and suggestions which improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Shirilord, A. Solving complex Sylvester matrix equation by accelerated double-step scale splitting (ADSS) method. Engineering with Computers 37, 489–508 (2021). https://doi.org/10.1007/s00366-019-00838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00838-6

Keywords

AMS subject classification

Navigation