Skip to main content
Log in

Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The nonlinear time-dependent displacement values of the curved (single/doubly) composite debonded shell structure are examined under different kinds of pulse loading in this research. The structural curved panel model is derived mathematically using the higher-order displacement theories containing the thickness stretching effect, whereas the sub-laminate approach is adopted for the inclusion of delamination between the subsequent layers. The structural geometry distortion under variable loading has been included in the current theoretical analysis through Green–Lagrange type of strain kinematics. Further, the governing differential equation order has been reduced with the help of 2D finite element formulation via the nine-noded isoparametric Lagrangian elements with variable degrees of freedom (eighty-one and ninety) for two different higher-order kinematics, respectively. The final equation of motion is solved computationally to evaluate the transient responses through an original computer code including the direct iterative technique and Newmark’s average acceleration method. The convergence criteria of the current numerical solution are established as a priori and the subsequent validity is demonstrated via comparing the current responses with available published data. Further, the comprehensive behavior of the debonded structure under the influence of the variable loads (time and area dependent) is evaluated by solving different numerical illustrations for variable geometrical configuration and described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. To CWS, Wang B (1998) Transient responses of geometrically nonlinear laminated composite shell structures. Finite Elem Anal Des 31:117–134. https://doi.org/10.1016/S0168-874X(98)00054-7

    Article  MATH  Google Scholar 

  2. Yu TT, Yin S, Bui TQ, Hirose S (2015) A simple FSDT-based isogeometric analysis for geometrically nonlinear analysis of functionally graded plates. Finite Elem Anal Des 96:1–10. https://doi.org/10.1016/j.finel.2014.11.003

    Article  Google Scholar 

  3. Nath Y, Shukla KK (2001) Non-linear transient analysis of moderately thick laminated composite plates. J Sound Vib 247:509–526. https://doi.org/10.1006/jsvi.2001.3752

    Article  Google Scholar 

  4. Yin S, Hale JS, Yu T, Bui TQ, Bordas SPA (2014) Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates. Compos Struct 118:121–138. https://doi.org/10.1016/j.compstruct.2014.07.028

    Article  Google Scholar 

  5. Bui TQ, Nguyen MN, Zhang C (2011) A meshfree model without shear-locking for free vibration analysis of first-order shear deformable plates. Eng Struct 33:3364–3380. https://doi.org/10.1016/j.engstruct.2011.07.001

    Article  Google Scholar 

  6. Amnieh HB, Zamzam MS, Kolahchi R (2018) Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically. Constr Build Mater 174:633–644. https://doi.org/10.1016/j.conbuildmat.2018.04.140

    Article  Google Scholar 

  7. Parhi A, Singh BN (2014) Stochastic response of laminated composite shell panel in hygrothermal environment. Mech Based Des Struct Mach 43:314–341. https://doi.org/10.1080/15397734.2014.888006

    Article  Google Scholar 

  8. Panda SK, Singh BN, Parhi A, Singh BN (2017) Nonlinear free vibration analysis of shape memory alloy embedded laminated composite shell panel. Mech Adv Mater Struct 24:713–724. https://doi.org/10.1080/15376494.2016.1196777

    Article  Google Scholar 

  9. Upadhyay AK, Pandey R, Shukla KK (2011) Nonlinear dynamic response of laminated composite plates subjected to pulse loading. Commun Nonlinear Sci Numer Simul 16:4530–4544. https://doi.org/10.1016/j.cnsns.2011.03.024

    Article  MATH  Google Scholar 

  10. Tran LV, Lee J, Nguyen-van H, Nguyen-xuan H, Wahab MA (2015) Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory. Int J Non-Linear Mech 72:42–52. https://doi.org/10.1016/j.ijnonlinmec.2015.02.007

    Article  Google Scholar 

  11. Zarei MS, Hajmohammad MH, Kolahchi R, Karami H (2018) Dynamic response control of aluminum beams integrated with nanocomposite piezoelectric layers subjected to blast load using hyperbolic visco-piezo-elasticity theory. J Sandw Struct Mater. https://doi.org/10.1177/1099636218785316

    Article  Google Scholar 

  12. Wei J, Shetty MS, Dharani LR (2006) Stress characteristics of laminated architectural glazing subjected to blast loading. Comput Struct 84:699–707. https://doi.org/10.1016/j.ijimpeng.2005.05.012

    Article  Google Scholar 

  13. Louca LA, Pan YG, Harding JE (1998) Response of stiffened and unstiffened plates subjected to blast loading. Eng Struct 20:1079–1086. https://doi.org/10.1016/S0141-0296(97)00204-6

    Article  Google Scholar 

  14. Nath Y, Alwar RS (1978) Non-linear static and dynamic of spherical shells response. Int J Non-Linear Mech 13:157–170. https://doi.org/10.1016/S0141-0296(97)00204-6

    Article  MATH  Google Scholar 

  15. Sun W, Liu X, Zhang Y (2018) Analytical analysis of vibration characteristics for the hard-coating cantilever laminated plate. Proc Inst Mech Eng Part G J Aerosp Eng 232:813–824. https://doi.org/10.1177/0954410016688926

    Article  Google Scholar 

  16. Birman V, Bert CW (1987) Behaviour of laminated plates subjected to conventional blast. Int J Impact Eng 6:145–155. https://doi.org/10.1016/0734-743X(87)90018-2

    Article  Google Scholar 

  17. Zhang YX, Kim KS (2005) A simple displacement-based 3-node triangular element for linear and geometrically nonlinear analysis of laminated composite plates. Comput Methods Appl Mech Eng 194:4607–4632. https://doi.org/10.1016/j.cma.2004.11.011

    Article  MATH  Google Scholar 

  18. Zhang YX, Kim KS (2005) Linear and Geometrically nonlinear analysis of plates and shells by a new refined non-conforming triangular plate/shell element. Comput Mech 36:331–342. https://doi.org/10.1007/s00466-004-0625-6

    Article  MathSciNet  MATH  Google Scholar 

  19. Turkmen HS, Mecitoglu Z (1999) Nonlinear structural response of laminated composite plates subjected to blast loading. AIAA J 37:1639–1647. https://doi.org/10.2514/2.646

    Article  Google Scholar 

  20. Kazanci Z, Mecitoglu Z (2006) Nonlinear damped vibrations of a laminated composite plate subjected to blast load. AIAA J 44:2002–2008. https://doi.org/10.2514/1.17620

    Article  Google Scholar 

  21. Ganapathi M, Patel BP, Makhecha DP (2004) Nonlinear dynamic analysis of thick composite/sandwich laminates using an accurate higher-order theory. Compos Part B 35:345–355. https://doi.org/10.1016/S1359-8368(02)00075-6

    Article  Google Scholar 

  22. Naidu NVS, Sinha PK (2006) Nonlinear finite element analysis of laminated composite shells in hygrothermal environments. Compos Struct 69:387–395. https://doi.org/10.1016/j.compstruct.2004.07.019

    Article  Google Scholar 

  23. Pai PF, Nayfeh AH, Oh K, Mook DT (1993) A refined nonlinear model of composite plates with integrated piezoelectric actuators and sensors. Int J Solids Struct 30:1603–1630. https://doi.org/10.1016/0020-7683(93)90193-B

    Article  MATH  Google Scholar 

  24. Amara K, Tounsi A, Megueni A, Adda-Bedia EA (2006) Effect of transverse cracks on the mechanical properties of angle-ply composites laminates. Theor Appl Fract Mech 45:72–78

    Article  Google Scholar 

  25. Fellah M, Tounsi A, Amara KH, Adda Bedia EA (2007) Effect of transverse cracks on the effective thermal expansion coefficient of aged angle-ply composites laminates. Theor Appl Fract Mech 48:32–40. https://doi.org/10.1016/j.tafmec.2007.04.007

    Article  Google Scholar 

  26. Szekrényes A (2016) Vibration and parametric instability analysis of delaminated composite beams. Int J Mater Metall Eng 10:821–838. https://doi.org/10.1999/1307-6892/10004740

    Article  Google Scholar 

  27. Szekrényes A (2017) Antiplane-inplane shear mode delamination between two second-order shear deformable composite plates. Math Mech Solids 22:259–282. https://doi.org/10.1177/1081286515581871

    Article  MathSciNet  MATH  Google Scholar 

  28. Yi G, Yu T, Bui TQ, Ma C, Hirose S (2017) SIFs evaluation of sharp V-notched fracture by XFEM and strain energy approach. Theor Appl Fract Mech 89:35–44. https://doi.org/10.1016/j.tafmec.2017.01.005

    Article  Google Scholar 

  29. Kang Z, Bui TQ, Saitoh T, Hirose S (2017) Quasi-static crack propagation simulation by an enhanced nodal gradient finite element with different enrichments. Theor Appl Fract Mech 87:61–77. https://doi.org/10.1016/j.tafmec.2016.10.006

    Article  Google Scholar 

  30. Bui TQ, Nguyen NT, Van Lich L, Nguyen MN, Truong TT (2018) Analysis of transient dynamic fracture parameters of cracked functionally graded composites by improved meshfree methods. Theor Appl Fract Mech 96:642–657. https://doi.org/10.1016/j.tafmec.2017.10.005

    Article  Google Scholar 

  31. Mishra PK, Pradhan AK, Pandit MK (2016) Delamination propagation analyses of spar wingskin joints made with curved laminated FRP composite panels. J Adhes Sci Technol 30:708–728. https://doi.org/10.1080/01694243.2015.1121851

    Article  Google Scholar 

  32. Mishra PK, Pradhan AK, Pandit MK (2016) Inter-laminar delamination analyses of Spar Wingskin Joints made with flat FRP composite laminates. Int J Adhes Adhes 68:19–29. https://doi.org/10.1016/j.ijadhadh.2016.02.001

    Article  Google Scholar 

  33. Ovesy HR, Totounferoush A, Ghannadpour SAM (2015) Dynamic buckling analysis of delaminated composite plates using semi-analytical finite strip method. J Sound Vib 343:131–143. https://doi.org/10.1016/j.jsv.2015.01.003

    Article  Google Scholar 

  34. Mohammadi B, Shahabi F, Ghannadpour SAM (2011) Post-buckling delamination propagation analysis using interface element with de-cohesive constitutive law. Proc Eng 10:1797–1802. https://doi.org/10.1016/j.proeng.2011.04.299

    Article  Google Scholar 

  35. Dimitri R, Tornabene F, Zavarise G (2018) Analytical and numerical modeling of the mixed-mode delamination process for composite moment-loaded double cantilever beams. Compos Struct 187:535–553. https://doi.org/10.1016/j.compstruct.2017.11.039

    Article  Google Scholar 

  36. Reddy JN, Liu CF (1985) A higher-order shear deformation theory of laminated elastic shells. Int J Eng Sci 23:319–330. https://doi.org/10.1016/0020-7225(85)90051-5

    Article  MATH  Google Scholar 

  37. Hari Kishore MDV, Singh BN, Pandit MK (2011) onlinear static analysis of smart laminated composite plate. Aerosp Sci Technol 15:224–235. https://doi.org/10.1016/j.ast.2011.01.003

    Article  Google Scholar 

  38. Jones RM (1975) Mechanics of composite materials. Taylor and Francis, Philadelphia

    Google Scholar 

  39. Reddy JN (2004) Mechanics of laminated composite plates and shells, Second edn. CRC Press, Florida

    Book  Google Scholar 

  40. Singh VK, Panda SK (2014) Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin-Walled Struct 85:341–349. https://doi.org/10.1016/j.tws.2014.09.003

    Article  Google Scholar 

  41. Mahapatra TR, Panda SK (2015) Thermoelastic vibration analysis of laminated doubly curved shallow panels using non-linear FEM. J Therm Stress 38:39–68. https://doi.org/10.1080/01495739.2014.976125

    Article  Google Scholar 

  42. Cook RD, Malkus DS, Plesha ME (2000) Concepts and applications of finite element analysis. John Willy and Sons (Asia) Pvt Ltd, Singapore

    MATH  Google Scholar 

  43. Ju F, Lee HP, Lee KH (1995) Finite element analysis of free vibration of delaminated composite plates. Compos Eng 5:195–209. https://doi.org/10.1016/0961-9526(95)90713-L

    Article  Google Scholar 

  44. Ju F, Lee HP, Lee KH (1995) Free vibration of composite plates with delaminations around cutouts. Compos Struct 31:177–183. https://doi.org/10.1016/0263-8223(95)00016-X

    Article  Google Scholar 

  45. Kumar A, Shrivastava RP (2005) Free vibration of square laminates with delamination around a central cutout using HSDT. Compos Struct 70:317–333. https://doi.org/10.1016/j.compstruct.2004.08.040

    Article  Google Scholar 

  46. Bathe K-J, Ram E, Wilso EL (1975) Finite-element formulations for large deformation dynamic analysis. Int J Numer Method Eng. 9:353–386. https://doi.org/10.1002/nme.1620090207

    Article  Google Scholar 

  47. Bathe K-J (1982) Finite element procedure in engineering analysis. Prentice-Hall, New Jersey

    Google Scholar 

  48. Wang YY, Lam KY, Liu GR (2001) A strip element method for the transient analysis of symmetric laminated plates. Int J Solids Struct 38:241–259. https://doi.org/10.1016/S0020-7683(00)00035-4

    Article  MATH  Google Scholar 

  49. Maleki S, Tahani M, Andakhshideh A (2012) Transient response of laminated plates with arbitrary laminations and boundary conditions under general dynamic loadings. Arch Appl Mech 82:615–630. https://doi.org/10.1007/s00419-011-0577-1

    Article  MATH  Google Scholar 

  50. Kundu CK, Sinha PK (2006) Nonlinear transient analysis of laminated composite shells. J Reinf Plast Compos 25:1129–1147. https://doi.org/10.1177/0731684406065196

    Article  Google Scholar 

  51. Parhi PK, Bhattacharyya SK, Sinha PK (2000) Finite element dynamic analysis of laminated composite plates with multiple delaminations. J Reinf Plast Compos 19:863–882. https://doi.org/10.1177/073168440001901103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirwani, C.K., Panda, S.K. Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load. Engineering with Computers 36, 1201–1214 (2020). https://doi.org/10.1007/s00366-019-00757-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00757-6

Keywords

Navigation