Skip to main content

Advertisement

Log in

Energy conservation and power bonds in co-simulations: non-iterative adaptive step size control and error estimation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Here, we study the flow of energy between coupled simulators in a co-simulation environment using the concept of power bonds. We introduce energy residuals which are a direct expression of the coupling errors and, hence, the accuracy of co-simulation results. We propose a novel energy-conservation-based co-simulation method (ECCO) for adaptive macro step size control to improve accuracy and efficiency. In contrast to most other co-simulation algorithms, this method is non-iterative and only requires knowledge of the current coupling data. Consequently, it allows for significant speed-ups and the protection of sensitive information contained within simulator models. A quarter car model with linear and nonlinear damping serves as a co-simulation benchmark and verifies the capabilities of the energy residual concept: reductions in the errors of up to 93% are achieved at no additional computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Note that we use the word ‘simulator’ throughout in the sense of a subsimulator: a mathematical model of a subsystem coupled to other such models of subsystems to form a full model of a total system.

  2. This is true if we assume an ideal bond that does not include physical energy sources or sinks. This is well justified in a co-simulation setting where (relevant) energy creation and dissipation ought to be accounted for inside subsystems. Our discussion is not limited by this choice, however, and it is fully possible to work with non-ideal bonds.

  3. Note that some coupling schemes interpolate input values. In the Gauss–Seidel iteration pattern, for example, one simulator is stepped first using input value extrapolation, and thereafter, the second simulator is stepped using interpolation of the other system’s outputs.

  4. The functions \(\mathbf {f}\) and \(\mathbf {g}\) may also depend on time explicitly.

  5. Note that the sign convention for the residual power is different than the one used for energy fluxes encountered so far. A positive residual power means that the energy of the total system increases.

  6. For a more comprehensive overview see, for example, Ref. [8] and references therein.

  7. S\(_1\) can be solved exactly with constant extrapolation of the input \(F_\text {c}(t) = F_\text {c}(t_i)\) for \(t \in (t_i,t_{i+1}]\).

  8. Setting \(k_\text {P} = 0\) and substantially lowering \(k_\text {I}\), for example, seems to be a much better choice to configure the PI-controller in this case.

References

  1. Henry G, Cox I, Crossland P, Duncan J (2009) Virtual ships: Nato standards development and implementation. Report, Systems Engineering and Assessment LTD Frome. UK

  2. Harries S, Tillig F, Wilken M, Zaraphonitis G (2011) 10th International Conference on Computer and IT Applications in the Maritime Industries. Technische Universität Hamburg, Harburg, pp. 411–425

  3. Palm H, Holzmann J, Klein R, Schneider SA, Gerling D (2013) A novel approach on virtual systems prototyping based on a validated, hierarchical, modular library. Lecture, Embedded World. Nuremberg, Germany

  4. C. Bertsch, E. Ahle, U. Schulmeister (2014) 10th International Modelica Conference. LinkÖping University Electronic Press, LinkÖping Electronic Conference Proceedings, pp. 27–33

  5. Günther M, Kværnø A, Rentrop P (2001) BIT 41(3):504. doi:10.1023/A:1021967112503

  6. Verhoeven A, Tasic B, Beelen TGJ, ter Maten EJW, Mattheij RMM (2008) Industrial and applied mathematics. J Num Anal 3(3–4):275

    Google Scholar 

  7. Busch M, Schweizer B (2011) Proceedings of the 7th European Nonlinear Dynamics Conference

  8. Busch M (2012) Zur effizienten Kopplung von Simulationsprogrammen. Dissertation, Universität Kassel

  9. Schierz T, Arnold M, Clauß C (2012) 9th International Modelica Conference. (Linköping University Electronic Press), Linköping Electronic Conference Proceedings, pp. 205–214. doi:10.3384/ecp12076205

  10. Arnold M, Clauss C, Schierz T (2013) Archive of Mechanical Engineering 60(1):75. doi:10.2478/meceng-2013-0005

    Google Scholar 

  11. Viel A (2014) 10th International Modelica Conference, ed. by H. Tummescheit, K.E. Årzén (LinkÖ ping University Electronic Press, 2014), LinkÖping Electronic Conference Proceedings, pp. 213–223. doi:10.3384/ECP14096213

  12. Sicklinger S, Belsky V, Engelmann B, Elmqvist H, Olsson H, Wüchner R, Bletzinger KU (2014) Int J Numer Meth Eng 98(6):418. doi:10.1002/nme.4637

    Article  Google Scholar 

  13. Benedikt M, Watzenig D, Zehetner J, Hofer A (2013) V International Conference on Computational Methods for Coupled Problems in Science and Engineering, Coupled Problems. Int Center Numer Methods Eng, pp. 1021–1032

  14. Paynter HM (1961) Analysis and Design of Engineering Systems: Class Notes for M.I.T. Course 2.751. M.I.T. Press, Boston

  15. Breedveld PC (1984) Physical systems theory in terms of bond graphs. Dissertation, Twente University

  16. Arnold M (2007) Multi-Rate Time Integration for Large Scale Multibody System Models. Springer Netherlands. IUTAM BOOKSER vol. 1, book section 1, pp. 1–10. doi:10.1007/978-1-4020-5981-0_1

  17. Arnold M, Hante S, Köbis MA (2014) Procee Appl Math Mech 14(1):43. doi:10.1002/pamm.201410014

    Article  Google Scholar 

  18. González F, Naya MA, Luaces A, González M (2011) Multibody Syst Dyn 25(4):461. doi:10.1007/s11044-010-9234-7

    Article  Google Scholar 

  19. Thewalt C, Roman M (1994) J Struct Eng-ASCE 120(9):2768. doi:10.1061/(ASCE)0733-9445(1994)120:9(2768)

    Article  Google Scholar 

  20. Mosqueda G, Stojadinovic B, Mahin S (2007) J Struct Eng-ASCE 133(8):1100. doi:10.1061/(ASCE)0733-9445(2007)133:8(1100)

    Article  Google Scholar 

  21. Gustafsson K, Lundh M, Söderlind G (1988) BIT 28(2):270. doi:10.1007/BF01934091

    Article  MathSciNet  Google Scholar 

  22. Burrage PM, Herdiana R, Burrage K (2004) J Comput Appl Math 170(2):317. doi:10.1016/j.cam.2004.01.027

    Article  MathSciNet  Google Scholar 

  23. Dahlquist G (1956) Math Scand 4:33

    Article  MathSciNet  Google Scholar 

  24. Schweizer B, Lu D (2014) Zamm-Z Angew Math Me 95(9):911. doi:10.1002/zamm.201300191

    Article  Google Scholar 

  25. Schweizer B, Li P, Lu D (2014) J Comput Nonlin Dyn 10(5):051007. doi:10.1115/1.4028503

    Article  Google Scholar 

  26. Clauß C, Arnold M, Schierz T, Bastian J (2012) Tagungsband der ASIM/GI-Fachgruppen STS und GMMS. ARGESIM-Verlag, pp. 57–70

  27. Popp K, Schiehlen W (2010) Ground vehicle dynamics. Springer, Berlin Heidelberg. doi:10.1007/978-3-540-68553-1

    Book  Google Scholar 

  28. Bußhardt J, Isermann R (1992) American Control Conference, pp. 531–535

  29. Blochwitz T, Otter M, Arnold M, Bausch C, Elmqvist H, Junghanns A, Mauss J, Monteiro M, Neidhold T, Neumerkel D, Olsson H, Peetz JV, Wolf S, Clauß C (2011)8th International Modelica Conference. In:  Clauß C (ed) Linköping University Electronic Press, Linköping Electronic Conference Proceedings, pp 105–114. doi:10.3384/ECP11063105

  30. Blochwitz T, Otter M, Åkesson J, Arnold M, Clauss C, Elmqvist H, Friedrich M, Junghanns A, Mauss J, Neumerkel D (2012) 9th International Modelica Conference. In:  Otter M, Zimmer D (eds) Linköping University Electronic Press, Linköping Electronic Conference Proceedings, pp 173–184. doi:10.3384/ECP12076173

  31. Kübler R, Schiehlen W (2000) Math Comp Model Dyn 6(2):93. doi:10.1076/1387-3954(200006)6:2;1-M;FT093

  32. Skjong S, Pedersen E (2016) 2016 International Conference on Bond Graph Modeling and Simulation. Society for Modeling and Simulation International. SIMUL SERIES, pp 147–159

Download references

Acknowledgements

This work was funded by the Research Council of Norway (Grant Number 225322), and the industrial partners in the ViProMa project consortium (VARD, Rolls-Royce Marine, and DNV GL). We are grateful for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Severin Sadjina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadjina, S., Kyllingstad, L.T., Skjong, S. et al. Energy conservation and power bonds in co-simulations: non-iterative adaptive step size control and error estimation. Engineering with Computers 33, 607–620 (2017). https://doi.org/10.1007/s00366-016-0492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-016-0492-8

Keywords

Navigation