Skip to main content
Log in

The meccano method for isogeometric solid modeling and applications

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We present a new method to construct a trivariate T-spline representation of complex solids for the application of isogeometric analysis. We take a genus-zero solid as a basis of our study, but at the end of the work we explain the way to generalize the results to any genus solids. The proposed technique only demands a surface triangulation of the solid as input data. The key of this method lies in obtaining a volumetric parameterization between the solid and the parametric domain, the unitary cube. To do that, an adaptive tetrahedral mesh of the parametric domain is isomorphically transformed onto the solid by applying a mesh untangling and smoothing procedure. The control points of the trivariate T-spline are calculated by imposing the interpolation conditions on points sited both on the inner and on the surface of the solid. The distribution of the interpolating points is adapted to the singularities of the domain to preserve the features of the surface triangulation. We present some results of the application of isogeometric analysis with T-splines to the resolution of Poisson equation in solids parameterized with this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bazaraa MS, Sherali HD, Shetty CM (1993) Nonlinear programing: theory and algorithms. Wiley, New York

    MATH  Google Scholar 

  2. Bazilevs Y, Calo VM, Cottrell JA, Evans J, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263

    Article  MATH  MathSciNet  Google Scholar 

  3. Bazilevs Y, Calo VM, Cottrell JA, Evans J, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2008) Isogeometric analysis: toward unification of computer aided design and finite element analysis. In: Trends in Engineering Computational Technology. Saxe-Coburg Publications, Stirling, pp 1–16

  4. Borouchaki H, Frey PJ (2005) Simplification of surface mesh using Hausdorff envelope. Comput Methods Appl Mech Eng 194:4864–4884

    Article  MATH  MathSciNet  Google Scholar 

  5. Buffa A, Cho D, Sangalli G (2010) Linear independence of the T-spline blending functions associated with some particular T-meshes. Comput Methods Appl Mech Eng 199:1437–1445

    Article  MATH  MathSciNet  Google Scholar 

  6. Carey GF, Oden JT (1982) Finite elements, a second course. Prentice-Hall, New Jersey

    Google Scholar 

  7. Cascón JM, Montenegro R, Escobar JM, Rodríguez E, Montero G (2007) A new meccano technique for adaptive 3-D triangulations. In: Proceedings of the 16th International Meshing Roundtable. Springer, Berlin, pp 103–120

  8. Cascón JM, Montenegro R, Escobar JM, Rodríguez E, Montero G (2009) The meccano method for automatic tetrahedral mesh generation of complex genus-zero solids. In: Proceedings of 18th International Meshing Roundtable. Springer, Berlin, pp 463–480

  9. Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld RF (2010) Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput Methods Appl Mech Eng 199:334–356

    Article  MATH  MathSciNet  Google Scholar 

  10. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester

    Book  Google Scholar 

  11. Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2003) Simultaneous untangling and smoothing of tetrahedral meshes. Comput Methods Appl Mech Eng 192:2775–2787

    Article  MATH  Google Scholar 

  12. Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2010) SUS Code—simultaneous mesh untangling and smoothing code. http://www.dca.iusiani.ulpgc.es/proyecto2012-2014

  13. Escobar JM, Cascón JM, Rodríguez E, Montenegro R (2011) A new approach to solid modeling with trivariate T-splines based on mesh optimization. Comput Methods Appl Mech Eng 200:3210–3222

    Article  MATH  Google Scholar 

  14. Escobar JM, Cascón JM, Rodríguez E, Montenegro R (2011) The meccano method for isogeometric solid modeling. In: Proceedings of the 20th International Meshing Roundtable. Springer, Berlin, pp 551–568

  15. Floater MS (1997) Parametrization and smooth approximation of surface triangulations. Comput Aided Geom Des 14:231–250

    Article  MATH  MathSciNet  Google Scholar 

  16. Floater MS (2003) Mean value coordinates. Comput Aided Geom Des 20:19–27

    Article  MATH  MathSciNet  Google Scholar 

  17. Floater MS, Hormann K (2005) Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modeling, Mathematics and Visualization. Springer, Berlin, pp 157–186

  18. Hormann K, Lévy B, Sheffer A (2007) Mesh parameterization: theory and practice. In: SIGGRAPH ’07: ACM SIGGRAPH 2007 courses. ACM Press, New York

  19. Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Sci Comput 23:193–218

    Article  MATH  MathSciNet  Google Scholar 

  20. Kossaczky I (1994) A recursive approach to local mesh refinement in two and three dimensions. J Comput Appl Math 55:275–288

    Article  MATH  MathSciNet  Google Scholar 

  21. Li X, Guo X, Wang H, He Y, Gu X, Qin H (2007) Harmonic volumetric mapping for solid modeling applications. In: Proceedings of ACM solid and physical modeling symposium. Association for Computing Machinery, Inc., New York, 109–120

  22. Li B, Li X, Wang K (2010) Generalized PolyCube trivariate splines. In: SMI 2010—International conference of shape modeling and applications, pp 261–265

  23. Li X, Zheng J, Sederberg TW, Hughes TJR, Scott MA (2012) On linear independence of T-spline blending functions. Comput Aided Geom Des 29:63–76

    Article  MATH  MathSciNet  Google Scholar 

  24. Lin J, Jin X, Fan Z, Wang CCL (2008) Automatic PolyCube-Maps. Lect Notes Comput Sci 4975:3–16

    Article  Google Scholar 

  25. Martin T, Cohen E, Kirby RM (2009) Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Comput Aided Geom Des 26:648–664

    Article  MATH  MathSciNet  Google Scholar 

  26. Martin T, Cohen E (2010) Volumetric parameterization of complex objects by respecting multiple materials. Comput Graph 34:187–197

    Article  Google Scholar 

  27. Montenegro R, Cascón JM, Escobar JM, Rodríguez E, Montero G (2009) An automatic strategy for adaptive tetrahedral mesh generation. Appl Numer Math 59:2203–2217

    Article  MATH  MathSciNet  Google Scholar 

  28. Montenegro R, Cascón JM, Rodríguez E, Escobar JM, Montero G (2010) The meccano method for automatic 3-D triangulation and volume parametrization of complex solids. Comput Sci Eng Technol Ser 26:19–48

    Article  Google Scholar 

  29. Piegl L, Tiller W (1997) The NURBS book. Springer, New York

    Book  Google Scholar 

  30. Scott MA, Borden M, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng 88:126–156

    Article  MATH  MathSciNet  Google Scholar 

  31. Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213-216:206–222

    Article  MathSciNet  Google Scholar 

  32. Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCSs. ACM Trans Graph 22:477–484

    Article  Google Scholar 

  33. Song W, Yang X (2005) Free-form deformation with weighted T-spline. Vis Comput 21:139–155

    Article  MathSciNet  Google Scholar 

  34. Tarini M, Hormann K, Cignoni P, Montani C (2004) Polycube-maps. ACM Trans Graph 23:853–860

    Article  Google Scholar 

  35. Verfürth R (1996) A review of a posteriori error estimation and adaptiveMesh-refinement technique. Wiley-Teubner, Chichester

    Google Scholar 

  36. Wang H, He Y, Li X, Gu X, Qin H (2008) Polycube splines. Comput Aided Geom Des 40:721–733

    Article  MATH  Google Scholar 

  37. Xu G, Mourrain B, Duvigneau R, Galligo A (2010) Optimal analysis-aware parameterization of computational domain in isogeometric analysis. Lect Notes Comput Sci 6130:236–254

    Article  Google Scholar 

  38. Xu G, Mourrain B, Duvigneau R, Galligo A (2010) Parametrization of computational domain in isogeometric analysis: methods and comparison. INRIA-00530758, pp 1–29

Download references

Acknowledgments

This work has been partially supported by the Spanish Government, “Secretaría de Estado de Universidades e Investigación” of the “Ministerio de Economía y Competitividad” and FEDER, grant contracts: CGL2011-29396-C03-01 and CGL2011-29396-C03-03, by “Consejería de Educación” of the “Junta de Castilla León”, grant contract: SA266A12-2, and by CONACYT-SENER (“Fondo Sectorial CONACYT SENER HIDROCARBUROS”, grant contract: 163723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Montenegro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escobar, J.M., Montenegro, R., Rodríguez, E. et al. The meccano method for isogeometric solid modeling and applications. Engineering with Computers 30, 331–343 (2014). https://doi.org/10.1007/s00366-012-0300-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-012-0300-z

Keywords

Navigation