Skip to main content
Log in

Hölder Regularity of μ-Similar Functions

  • Published:
Constructive Approximation Aims and scope

Abstract

Given a positive measure μ, d contractions on [0,1] and a function g on ℝ, we are interested in function series F that we call “μ-similar functions” associated with μ, g and the contractions. These series F are defined as infinite sums of rescaled and translated copies of the function g, the dilation and translations depending on the choice of the contractions. The class of μ-similar functions F intersects the classes of self-similar and quasi-self-similar functions, but the heterogeneity we introduce in the location of the copies of g make the class much larger.

We study the convergence and the global and local regularity properties of the μ-similar functions. We also try to relate the multifractal properties of μ to those of F and to develop a multifractal formalism (based on oscillation methods) associated with F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, P.: Characterization of pointwise Hölder regularity. Appl. Comput. Harmon. Anal. 4(4), 429–443 (1997)

    Article  MathSciNet  Google Scholar 

  2. Aouidi, J., Ben Slimane, M.: Multifractal formalism for quasi-self-similar functions. J. Stat. Phys. 108(3–4), 541–590 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aubry, J.-M., Jaffard, S.: Random Wavelet series. Commun. Math. Phys. 227(3), 483–514 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barral, J., Seuret, S.: Function series with multifractal variations. Math. Nachr. 274–275, 3–18 (2004)

    Article  MathSciNet  Google Scholar 

  5. Barral, J., Seuret, S.: From multifractal measures to multifractal wavelet series. J. Fourier Anal. Appl. 11(5), 589–614 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Batakis, A.: On entropy and Hausdorff dimension of measures defined through a non-homogeneous Markov process. Colloq. Math. 104, 193–206 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ben Nasr, F.: Analyse multifractale de mesures. C.R. Acad. Sci., Paris, Sér. I 319(1), 807–810 (1994)

    MATH  MathSciNet  Google Scholar 

  8. Ben Nasr, F., Bhouri, I., Heurteaux, Y.: The validity of the multifractal formalism: results and examples. Adv. Math. 165, 264–284 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ben Slimane, M.: Multifractal formalism and anisotropic self similar functions. Math. Proc. Camb. Philos. Soc. 124, 329–363 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ben Slimane, M.: Multifractal formalism for self-similar functions under the action of nonlinear dynamical systems. Constr. Approx. 15, 209–240 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brown, G., Michon, G., Peyrière, J.: On the multifractal analysis of measures. J. Stat. Phys. 66, 775–790 (1992)

    Article  MATH  Google Scholar 

  12. Cioczek-Georges, R., Mandelbrot, B.B., Samorodnitsky, G., Taqqu, M.S.: Stable fractal sums of pulses: the cylindrical case. Bernoulli 1(3), 201–216 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Demichel, Y., Tricot, C.: Analysis of the fractal sum of pulses. Math. Proc. Camb. Philos. Soc. 141(2), 355–370 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Durand, A.: Propriétés d’ubiquité en analyse multifractale et séries aléatoires d’ondelettes à coefficients corrélés. Ph.D. Université Paris-Est (2007)

  15. Frisch, U., Parisi, G.: Fully developed turbulence and intermittency. In: Proc. Enrico Fermi International Summer School in Physics, pp. 84–88. North-Holland, Amsterdam (1985)

    Google Scholar 

  16. Heurteaux, Y.: Estimations de la dimension inférieure et de la dimension supérieure des mesures. Ann. Inst. H. Poincaré Probab. Stat. 34(3), 309–338 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jaffard, S.: The multifractal formalism for functions part I and II. SIAM J. Anal. 28(4), 944–998 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jaffard, S.: Lacunary wavelet series. Ann. Appl. Probab. 10(1), 313–329 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jaffard, S.: Wavelet techniques in multifractal analysis. In: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. Proc. Symp. Pure Math. AMS, Providence (2004)

    Google Scholar 

  21. Olsen, L.: A multifractal formalism. Adv. Math. 116, 82–196 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pesin, Y., Weiss, H.: A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions. J. Stat. Phys. 86(1–2), 233–275 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Saka, K.: Scaling exponents of self similar functions and wavelet analysis. Proc. Am. Math. Soc. 133, 1035–1045 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moez Ben Abid.

Additional information

Communicated by Stephane Jaffard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Abid, M., Seuret, S. Hölder Regularity of μ-Similar Functions. Constr Approx 31, 69–93 (2010). https://doi.org/10.1007/s00365-009-9042-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-009-9042-6

Keywords

Mathematics Subject Classification (2000)

Navigation