Skip to main content
Log in

Embryonic and post-embryonic development inside wolf spiders’ egg sac with special emphasis on the vitellus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The development of Pardosa saltans wolf spiders inside an egg sac includes two periods: an embryonic period and a post-embryonic period after hatching. We investigated spiderlings’ energy expenditure to assess energetic costs during the different embryonic and post-embryonic developmental stages during which they are confined within their egg sac. We focused on the following developmental stages: egg, embryonic stages 1 and 2, and two stages, separated by a moult, during post-embryogenesis inside the egg sac: “juvenile instars 1 and 2” until emergence of 2 instar juveniles from their egg sac. We present the first biochemical characterization of the vitellus of wolf spiders’ eggs, embryos and juveniles. Lipovitellins (LV) are composed of four apolipoproteins of 116, 87, 70 and 42 kDa, respectively, and LV represent 35–45% of total protein during development. The principal LV lipids are triglycerides, phospholipids, free fatty acids and sterols. Egg caloric content averaged 127 cal/g (proteins: 91 cal/g, lipids: 33 cal/g, carbohydrates: 3 cal/g). During development from undivided egg to emerged “juvenile 2”, 67% of proteins, 51% of carbohydrates and 49% of triglycerides stocks were depleted. At the end of the post-embryonic period, at emergence from egg sac, body energy stock of “juveniles 2” was 38% of the initial calorie stocks in the eggs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackman RG, McLeod C, Banerjee AK (1990) An overview of analyses by chromarodiatroscan TLC-FID. J Planar Chromatogr 3:450–490

    CAS  Google Scholar 

  • Amsler MO, George RY (1985) Changes in the biochemical composition of Euphausia superba Dana embryos during early development. Polar Biol 4:61–63

    Article  CAS  Google Scholar 

  • Andersen SO (1979) Biochemistry of the insect cuticle. Annu Rev Entomol 24:29–61

    Article  CAS  Google Scholar 

  • Anderson JF (1978) Energy content of spider eggs. Oecologia (Berl) 37:41–57

    Article  Google Scholar 

  • Beningher PG, Lucas A (1984) Seasonal variations of the major lipid classes in relation to the reproductive activity of two species of clams raised in a common habitat: Tapes decussatus L. (Jeffreys) and Tapes philippinarum (Afams and Reeve). J Exp Mar Biol Ecol 79:79–90

    Article  Google Scholar 

  • Boctor FN, Kamel MY (1976) Purification and characterization of two lipovitellins from eggs of the tick, Dermacentor andersoni. Insect Biochem 6:233–240

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Byrne BM, Gruber M, AB G (1989) The evolution of egg yolk proteins. Prog Biophys Mol Biol 53:33–69

    Article  CAS  PubMed  Google Scholar 

  • Campos E, Moraes J, Facanha AR, Moreira E, Valle D, Abreu L, Manso PPA, Nascimento A, Pelajo-Machado M, Lenzi H, Masuda A, da Silva Vaz Jr I, Logullo C (2008) Kinetics of energy source utilization in Boophilus microplus. Vet Parasitol 138:349–357

    Article  Google Scholar 

  • Canard A (1987) Analyse nouvelle du développement postembryonnaire des araignées. Rev Arachnol 7(3):91–128

    Google Scholar 

  • Canard A, Stockmann R (1993) Comparative postembryonic development of arachnids. Mem Qld Mus 33(2):461–468

    Google Scholar 

  • Chaffoy de Courcelles DD, Kondo M (1980) Lipovitellin from the crustacean, Artemia salina. Biochemical analysis of lipovitellin complex from the yolk granules. J Biol Chem 255:6727–6733

    PubMed  Google Scholar 

  • Chen L, Jiang H, Zhou Z, Li K, Deng GY, Liu Z (2004) Purification of vitellin from the ovary of Chinese mitten-handed crab (Eriocheir sinensis) and development of an antivitellin ELISA. Comp Biochem Physiol B 138:305–311

    Article  PubMed  Google Scholar 

  • Cheong SP, Huang J, Bendena WG, Tobe SS, Hui JH (2015) Evolution of ecdysis and metamorphosis in arthropods: the rise of regulation of juvenile hormone. Integr Comp Biol 55(5):878–890

    Article  PubMed  Google Scholar 

  • Chino H (1997) Physiological significance of lipid transport by lipophorin for long distance flight in insects. Comp Biochem Physiol B 117:455–461

    Article  Google Scholar 

  • Chinzei Y, Chino H, Takahashi K (1983) Purification and properties of vitellogenin and vitellin from a tick, Ornithodoros moubata. J Comp Physiol B 152:13–21

    Article  CAS  Google Scholar 

  • Clarke A, Brown JH, Holmes LJ (1990) The biochemical composition of eggs from Macrobrachium rosenbergii in relation to embryonic development. Comp Biochem Physiol B 95:505–511

    Article  Google Scholar 

  • Cunningham M, Pollero RJ (1996) Characterization of lipoprotein fractions with high content of hemocyanin in the hemolymphatic plasma of Polybetes pythagoricus. J Exp Zool 274:275–280

    Article  CAS  Google Scholar 

  • De Almeida RFM, Fedorov A, Prieto M (2003) Sphingomyelin / Phosphatidylcholine / Cholesterol Phase Diagram : Boundaries and Composition of Lipid Rafts. Biophys J 85(4):2406–2416

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhadialla TS, Raikhel AS (1990) Biosynthesis of mosquito vitellogenin. J Biol Chem 256:9924–9933

    Google Scholar 

  • Dovner RGH (2012) Energy metabolism in insects. Springer Sciences and Business Media, Newyork

    Google Scholar 

  • Downes MF (1987) A proposal for standardization of the terms used to describe the early development of spiders, based on a study of Theridion rufipes Lucas (Araneae: Theridiidae). Bull Br Arachnol Soc 7(6):187–193

    Google Scholar 

  • Engwall E, Perlmann P (1972) Enzyme-linked immunosorbent assay, ELISA III. Quantification of specific antibodies by enzyme-labelled anti-immunoglobulin in antigen-coated-tubes. J Immunol 109:129–135

    Google Scholar 

  • Foelix RF (2011) Biology of spiders, 3rd edn. Oxford University Press and Georg Thieme Verlag, New York

    Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Garcia F, Cunningham M, Soulages JL, Garda HA, Pollero RJ (2006) Structural characterization of the lipovitellin from the shrimp Macrobrachium borellii. Comp Biochem Physiol B 145:365–370

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Guerrero M, Racotta IS, Villarreal H (2003) Variation in lipid, protein, and carbohydrate content during the embryonic development of the crayfish Cherax quadricarinatus (Decapoda : Parastacidae). J Crustac Biol 23:1–6

    Article  Google Scholar 

  • Gibellini F, Smith TK (2010) The Kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62(6):414–428

    Article  CAS  PubMed  Google Scholar 

  • González Baró MR, Heras H, Pollero RJ (2000) Enzyme activities involved in lipid metabolism during embryonic development of Macrobrachium borellii. J Exp Zool 286:231–237

    Article  PubMed  Google Scholar 

  • Heras H, González Baró MR, Pollero RJ (2000) Lipid and fatty acid composition and energy partitioning during embryo development in the shrimp Macrobrachium borellii. Lipids 35:645–651

    Article  CAS  PubMed  Google Scholar 

  • Hinton HE (1981) The biology of insect eggs, vol 1–3. Pergamon Press, Oxford, p 1125.

    Google Scholar 

  • Holland DL (1978) Lipid reserves and energy metabolism in the larvae of benthic marine invertebrates. In: Malins DC, Sargent JR (eds) Biochemical and biophysical perspectives in marine biology. Academic Press, New York, pp 85–123

    Google Scholar 

  • Izumi S, Yano K, Yamamoto Y, Takahashi SY (1994) Yolk proteins from insect eggs: structure, biosynthesis and programmed degradation during embryogenesis. J Insect Physiol 40–9:735–746

    Article  Google Scholar 

  • Kawazoe I, Jasmani S, Shih T, Suzuki Y, Aida K (2000) Purification and characterization of vitellin from the ovary of kuruma prawn, Penaeus japonicus. Fish Sci 66:390–396

    Article  CAS  Google Scholar 

  • Kunkel JG, Nordin JH (1985) Yolk proteins. In: Kerkut GA, Gliberts LI (eds) Comprehensive Insect Physiol, Biochemistry and Pharmacology, vol 1. Pergamon Press, Oxford, pp 83–111

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Laino A, Cunningham M, Heras H, Garcia F (2011) Isolation and characterization of two vitellins from eggs of the spider Polybetes pythagoricus (Araneae: Sparassidae). Comp Biochem Physiol B 158:142–148

    Article  PubMed  Google Scholar 

  • Laino A, Cunningham M, Costa FG, Garcia F (2013) Energy sources from the eggs of the wolf spider Schizocosa malitiosa: isolation and characterization of lipovitellins. Comp Biochem Physiol B 165:172–180

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Vance DE (2008) Phosphatidylcholine and choline homeostasis. J Lipid Res 49(6):1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Lubzens E, Ravid T, Khayat M, Daube N, Tietz A (1997) Isolation and characterization of the high-density lipoproteins from the hemolymph and ovary of the penaeid shrimp Penaeus semisulcatus (de Haan): apoproteins and lipids. J Exp Zool 278:339–348

    Article  CAS  PubMed  Google Scholar 

  • Martin-Creuzburg D, Westerlund SA, Hoffmann KH (2007) Ecdysteroid levels in Daphnia magna during a molt cycle: determination by radioimmunoassat (RIA) and liquid chromatography-mass spectrometry (LC-MS). Gen Comp Endocrinol 151:66–71

    Article  CAS  PubMed  Google Scholar 

  • Masetti M, Giorgi F (1989) Vitellin degradation in developing embryos of the stick insect, Carausius morosus. J Insect Physiol 35:689–697

    Article  CAS  Google Scholar 

  • Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412

    Article  CAS  PubMed  Google Scholar 

  • Minelli A, Boxshall G, Fusco G (2013) Arthropod biology and evolution: molecules, development, morphology. Springer Science & Business Media, Newyork, 532 p

    Book  Google Scholar 

  • Mittmann B, Wolff C (2012) Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C.L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol 222:189–216

    Article  PubMed  Google Scholar 

  • Morrison WR, Smith LM (1992) Preparation of fatty acid methyl esters and dimethylacetals from lipid with boron fluoride-methanol. J Lipid Res 5:600–608

    Google Scholar 

  • Needham J (1950) Biochemistry and morphogenesis. Cambridge University Press, Cambridge

    Google Scholar 

  • Noga AA, Vance DE (2003) A gender specific role for phosphatidylethanolamine N-methyltransferase – derived phosphatidylcholine in the regulation of plasma high density and very low density lipoproteins in mice. J Biol Chem 278(24):21851–21859

    Article  CAS  PubMed  Google Scholar 

  • Noga AA, Zhao Y, Vance DE (2002) An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins. J Biol Chem 277(44):42358–42365

    Article  CAS  PubMed  Google Scholar 

  • Petersen S, Anger K (1997) Chemical and physiological changes during the embryonic development of the spider crab, Hyas araneus L. (Decapoda: Majidae). Comp Biochem Physiol B 117:299–306

    Article  Google Scholar 

  • Raikhel AS, Dhadialla TS (1992) Accumulation of yolk proteins in insect oocytes. Rev Ent 37:217–251

    Article  CAS  Google Scholar 

  • Ruhland F, Chiara V, Trabalon M (2016a) Age and egg-sac loss determine maternal behaviour and locomotor activity of wolf spiders (Araneae, Lycosidae). Behav Process 132:57–65

    Article  Google Scholar 

  • Ruhland F, Pétillon J, Trabalon M (2016b) Physiological costs during the first maternal care in the wolf spider Pardosa saltans (Araneae, Lycosidae). J Insect Physiol 95:42–50

    Article  CAS  PubMed  Google Scholar 

  • Salerno AP, Dansa-Petretski M, Silva-Neto MAC, Coelho HSL, Masuda H (2002) Rhodnius prolixus vitellin is composed of three different populations: comparison with vitellogenin. Insect Biochem Mol Biol 32:709–717

    Article  CAS  PubMed  Google Scholar 

  • Sasaki GC, Capuzzo JM, Biesiot P (1986) Nutritional and bioenergetics considerations in the development of the American lobster Homarus americanus. Can J Fish Aquat Sci 43:2311–2319

    Article  CAS  Google Scholar 

  • Schaefer M (1976) An analysis of diapause and resistance in the egg stage of Floronia bucculenta (Araneida: Linyphiidae). Oecologia (Berl) 25:155–174

    Article  Google Scholar 

  • Schartau W, Leidescher T (1983) Composition of the hemolymph of the tarantula Eurypelma californicum. J Comp Physiol 152:73–77

    Article  CAS  Google Scholar 

  • Sloggett JJ, Lorenz MW (2008) Egg composition and reproductive investment in aphidophagous ladybird beetles (Coccinellidae: Coccinellini): egg development and interspecific variation. Physiol Entomol 33(3):200–208

    Article  Google Scholar 

  • Slotte JP (2013) Biological functions of sphingomyelins. Progress Lipid Res 52:424–437

    Article  CAS  Google Scholar 

  • Slotte JP, Ramstedt B (2007) The functional role of sphingomyelin in cell membranes. Eur J Lipid Sci Technol 109:977–981

    Article  CAS  Google Scholar 

  • Subramoniam T (1991) Yolk utilization and esterase activity in the mole crab Emerita asiatica (Milne Edwards). In: Wenner AM, Kuris A. (eds), Crustacean issues, vol 7. Balkena Press, Roterdam, pp. 19–30

  • Tatchell RJ (1971) Electrophoretic studies on the proteins of the hemolymph, saliva and eggs of the cattle tick, Dermacentor variabilis. Insect Biochem 1:47–55

    Article  CAS  Google Scholar 

  • Telfer WH, Kulakosky PC (1984) Isolated hemolymph proteins as probes of endocytotic yolk formation. Adv Invert Reprod 3:81–86

    CAS  Google Scholar 

  • Trabalon M (2011) Agonistic interactions, cuticular and hemolymphatic lipid variations during the foraging period in spider females Brachypelma albopilosa (Theraphosidae). J Insect Physiol 57:735–743

    Article  CAS  PubMed  Google Scholar 

  • Trabalon M, Blais C (2012) Juvenile development, ecdysteroids and hemolymph level of metabolites in the spider Brachypelma albopilosum (Theraphosidae). J Exp Zool 00:1–12

    Google Scholar 

  • Tufail M, Takeda M (2008) Molecular characteristics of insect vitellogenins. J Insect Physiol 54:1447–1458

    Article  CAS  PubMed  Google Scholar 

  • Ueland PM (2011) Choline and betaine in health and disease. J Inherit Metab Dis 34(1):3–15

    Article  CAS  PubMed  Google Scholar 

  • Vachon M (1957) Contribution à l’étude du développement postembryonnaire des araignées. Première note. Généralités et nomenclature des stades. Bull Soc Zool Fr 82:337–354

    Google Scholar 

  • Vachon M (1958) Contribution à l’étude du développement postembryonnaire des araignées. Deuxième note. Ortognathes. Bull Soc Zool Fr 83:429–461

    Google Scholar 

  • Viera C, Ghione S (2007) Post-embryonic development of the sub-social spider Anelosimus cf. studiosus (Araneae, Theridiidae). Bull Br Arachnol Soc 14(1):30–32

    Article  Google Scholar 

  • Walker A, Ando S, Smith GD, Lee RF (2006) The utilization of lipovitellin during blue crab (Callinectes sapidus) embryogenesis. Comp Biochem Physiol B 143:201–208

    Article  PubMed  Google Scholar 

  • Wallace RW (1985) Vitellogenesis and oocyte growth in nonmammalian vertebrates. In: Browder LW (ed) Developmental Biology, vol 1. Plenum Press, New York, pp 127–177

    Google Scholar 

  • Whitcomb WH, Hite M, Eason R (1966) Life history of the green lynx spider, Peucetia viridans (Araneida: Oxyopidae). J Kansas Entomol Soc 39:259–267

    Google Scholar 

  • Wolff C, Hilbrant M (2011) The embryonic development of the central American wandering spider Cupiennius salei. Frontiers Zool 8:15. doi:10.1186/1742-9994-8-15

    Article  Google Scholar 

  • Wurdak E, Ramousse R (1984) Organisation sensorielle de la larve et de la première nymphe chez l’araignée Araneus suspicax (O. Pickard-Cambridge). Rev Arachnol 5:287–299

    Google Scholar 

  • Yamashita O, Indrasith LS (1988) Metabolic Fates of Yolk Proteins during Embryogenesis in Arthropods. Dev Growth Differ 30(4):337–346

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Ann Cloarec and Pr Simon N. Thornton for reading and correcting the English. The work was partly supported by funding from the project ECOS-MINCyt (France-Argentine) No. A16B03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trabalon.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trabalon, M., Ruhland, F., Laino, A. et al. Embryonic and post-embryonic development inside wolf spiders’ egg sac with special emphasis on the vitellus. J Comp Physiol B 188, 211–224 (2018). https://doi.org/10.1007/s00360-017-1120-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-017-1120-7

Keywords

Navigation