Skip to main content
Log in

Mechanisms of Na+ uptake, ammonia excretion, and their potential linkage in native Rio Negro tetras (Paracheirodon axelrodi, Hemigrammus rhodostomus, and Moenkhausia diktyota)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Mechanisms of Na+ uptake, ammonia excretion, and their potential linkage were investigated in three characids (cardinal, hemigrammus, moenkhausia tetras), using radiotracer flux techniques to study the unidirectional influx (J in), efflux (J out), and net flux rates (J net) of Na+ and Cl, and the net excretion rate of ammonia (J Amm). The fish were collected directly from the Rio Negro, and studied in their native “blackwater” which is acidic (pH 4.5), ion-poor (Na+, Cl ~20 µM), and rich in dissolved organic matter (DOM 11.5 mg C l−1). J Nain , J Clin , and J Amm were higher than in previous reports on tetras obtained from the North America aquarium trade and/or studied in low DOM water. In all three species, J Nain was unaffected by amiloride (10−4 M, NHE and Na+ channel blocker), but both J Nain and J Clin were virtually eliminated (85–99 % blockade) by AgNO3 (10−7 M). A time course study on cardinal tetras demonstrated that J Nain blockade by AgNO3 was very rapid (<5 min), suggesting inhibition of branchial carbonic anhydrase (CA), and exposure to the CA-blocker acetazolamide (10−4 M) caused a 50 % reduction in J Nain .. Additionally, J Nain was unaffected by phenamil (10−5 M, Na+ channel blocker), bumetanide (10−4 M, NKCC blocker), hydrochlorothiazide (5 × 10−3 M, NCC blocker), and exposure to an acute 3 unit increase in water pH. None of these treatments, including partial or complete elimination of J Nain (by acetazolamide and AgNO3 respectively), had any inhibitory effect on J Amm. Therefore, Na+ uptake in Rio Negro tetras depends on an internal supply of H+ from CA, but does not fit any of the currently accepted H+-dependent models (NHE, Na+ channel/V-type H+-ATPase), or co-transport schemes (NCC, NKCC), and ammonia excretion does not fit the current “Na+/NH4 + exchange metabolon” paradigm. Na+, K+-ATPase and V-type H+-ATPase activities were present at similar levels in gill homogenates, Acute exposure to high environmental ammonia (NH4Cl, 10−3 M) significantly increased J Nain , and NH4 + was equally or more effective than K+ in activating branchial Na+,(K+) ATPase activity in vitro. We propose that ammonia excretion does not depend on Na+ uptake, but that Na+ uptake (by an as yet unknown H+-dependent apical mechanism) depends on ammonia excretion, driven by active NH4 + entry via basolateral Na+,(K+)-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Balm P, Goossen N, van de Rijke S, Wendelaar Bonga S (1988) Characterization of transport Na+-ATPases in gills of freshwater tilapia. Evidence for branchial Na+/H+ (–NH4 +), ATPase activity in fish gills. Fish Physiol Biochem 5:31–38

    Article  PubMed  CAS  Google Scholar 

  • Benos D (1982) Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol 242:C131–C145

    PubMed  CAS  Google Scholar 

  • Boisen AMZ, Amstrup J, Novak I, Grosell M (2003) Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio). Biochim Biophys Acta 1618:207–218

    Article  PubMed  CAS  Google Scholar 

  • Brix KV, Grosell M (2012) Comparative characterization of Na+ transport in Cyprinodon variegatus variegatus and Cyprinodon variegatus hubbsi: a model species complex for studying teleost invasion of freshwater. J Exp Biol 215:1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Duarte RM, Ferreira MS, Wood CM, Val AL (2013) Effect of low pH exposure on Na+ regulation in two cichlid fish species of the Amazon. Comp Biochem Physiol A166:441–448

    Article  Google Scholar 

  • Evans DH (2011) Freshwater fish gill ion transport: August Krogh to morpholinos and microprobes. Acta Physiol 202:349–359

    Article  CAS  Google Scholar 

  • Furch K (1984) Water chemistry of the Amazon basin: the distribution of chemical elements among freshwaters. In: Sioli H (ed) The Amazon. Limnology and landscape ecology of a mighty tropical river and its basin. Dr DW Junk, Dordrecht, pp 167–199

    Google Scholar 

  • Galvez F, Donini A, Smith S, O’Donnell MJ, Wood CM (2008) A matter of potential concern: natural organic matter alters the electrical properties of fish gills. Environ Sci Technol 42:9385–9390

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Romeu FG, Maetz J (1964) The mechanism of sodium and chloride uptake by the gills of a fresh-water fish, Carassius auratus 1. Evidence for an independent uptake of sodium and chloride ions. J Gen Physiol 47:1195–1207

    Article  CAS  PubMed Central  Google Scholar 

  • Gilmour KM, Perry SF (2009) Carbonic anhydrase and acid–base regulation in fish. J Exp Biol 212:1647–1661

    Article  PubMed  CAS  Google Scholar 

  • Giménez I (2006) Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Curr Opin Nephrol Hypertens 15:517–523

    Article  PubMed  Google Scholar 

  • Gonzalez RJ, Preest M (1999) Ionoregulatory specializations for exceptional tolerance of ion-poor, acidic waters in the neon tetra (Paracheirodon innesi). Physiol Biochem Zool 72:156–163

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez RJ, Wilson RW (2001) Patterns of ion regulation in acidophilic fish native to the ion-poor, acidic Rio Negro. J Fish Biol 58:1680–1690

    Article  Google Scholar 

  • Gonzalez RJ, Dalton VM, Patrick ML (1997) Ion regulation in ion-poor, acidic water by the blackskirt tetra (Gymnocorymbus ternetzi), a fish native to the Amazon River. Physiol Zool 70:428–435

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez RJ, Wood CM, Wilson R, Patrick M, Bergman HL, Narahara A, Val AL (1998) Effects of water pH and Ca2+ concentration on ion balance in fish of the Rio Negro, Amazon. Physiol Zool 71:15–22

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez RJ, Wilson RW, Wood CM, Patrick ML, Val AL (2002) Diverse strategies for ion regulation in fish collected from the ion-poor, acidic Rio Negro. Physiol Biochem Zool 75:37–47

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez RJ, Wilson RW, Wood CM (2005) Ionoregulation in tropical fish from ion-poor, acidic blackwaters. In: Val AL, Almeida-Val VMF, Randall DJ (eds) The physiology of tropical fish. Fish physiology, vol 22. Academic Press, San Diego, pp 397–437

    Chapter  Google Scholar 

  • Goss G, Gilmour KM, Hawkings G, Brumbach JH, Huynh M, Galvez F (2011) Mechanism of sodium uptake in PNA negative MR cells from rainbow trout, Oncorhynchus mykiss as revealed by silver and copper inhibition. Comp Biochem Physiol A159:234–241

    Article  Google Scholar 

  • Hirata T, Kaneko T, Ono T, Nakazato T, Furukawa N, Hasegawa S, Wakabayashi S, Shigekawa M, Chang MH, Romero MF, Hirose S (2003) Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol 284:R1199–R1212

    CAS  Google Scholar 

  • Hiroi J, Yasumasu S, McCormick SD, Hwang PP, Kaneko T (2008) Evidence for an apical Na–Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211:2584–2599

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Kobayashi S, Nakamura N, Esaki M, Miyagi H, Hoshijima K, Hirose S (2013) Close association of carbonic anhydrase (CA2a & CA15a), Na+/H+ exchanger (Nhe3b), and ammonia transporter Rhcg1 in zebrafish ionocytes responsible for Na+ uptake. Front Physiol 4:59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kirschner LB (2004) The mechanism of sodium chloride uptake in hyperregulating aquatic animals. J Exp Biol 207:1439–1452

    Article  PubMed  CAS  Google Scholar 

  • Kleyman TR, Cragoe EJ Jr (1988) Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 105:1–21

    Article  PubMed  CAS  Google Scholar 

  • Krogh A (1938) The active absorption of ions in some freshwater animals. Z Vergl Physiol 25:335–350

    Google Scholar 

  • Kumai Y, Perry SF (2011) Ammonia excretion via Rhcg1 facilitates Na+ uptake in larval zebrafish, Danio rerio, in acidic water. Am J Physiol 301:R1517–R1528

    CAS  Google Scholar 

  • Kwong RWM, Kumai Y, Perry SF (2014) The physiology of fish at low pH: the zebrafish as a model system. J Exp Biol 217:651–662

    Article  PubMed  CAS  Google Scholar 

  • Liew HJ, Sinha AK, Nawata CM, Blust R, Wood CM, DeBoeck G (2013) Differential responses in ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high environmental ammonia in three freshwater teleosts. Aquat Toxicol 126:63–76

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Randall DJ (1993) H+-ATPase in crude homogenates of fish gill tissue: inhibitor sensitivity and environmental and hormonal regulation. J Exp Biol 180:163–174

    CAS  Google Scholar 

  • Lin C-C, Lin L-Y, Hsu H-H, Thermes V, Prunet P, Horng J-L, Hwang P-P (2012) Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater. Am J Physiol 302:R283–R291

    Article  CAS  Google Scholar 

  • Maetz J (1956) Les échanges de sodium chez le poisson Carassius auratus L. Action d’un inhibiteur de l’anydrase carbonique. J Physiol Paris 48:1085–1099

    PubMed  CAS  Google Scholar 

  • Maetz J, Garcia-Romeu F (1964) The mechanism of sodium and chloride uptake by the gills of a fresh-water fish, Carassius auratus II. Evidence for NH4 +/Na+ and HCO3 /Cl exchanges. J Gen Physiol 47:1209–1227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Matsuo AYO, Val AL (2007) Acclimation to humic substances prevents whole body sodium loss and stimulates branchial calcium uptake capacity in the cardinal tetras, Paracheirodon axelrodi (Schultz) subjected to extremely low pH. J Fish Biol 70:989–1000

    Article  CAS  Google Scholar 

  • McCormick SD (1993) Methods for the non-lethal gill biopsy and measurements of Na+, K+-ATPase activity. Can J Fish Aquat Sci 50:656–658

    Article  CAS  Google Scholar 

  • Morgan IJ, Henry RP, Wood CM (1997) The mechanism of acute silver nitrate toxicity in freshwater rainbow trout (Oncorhynchus mykiss) is inhibition of gill Na+ and Cl transport. Aquat Toxicol 38:145–163

    Article  CAS  Google Scholar 

  • Morgan TP, Grosell M, Gilmour KM, Playle RC, Wood CM (2004a) Time course analysis of the mechanism by which silver inhibits active Na+ and Cl uptake in the gills of rainbow trout. Am J Physiol 287:R234–R242

    CAS  Google Scholar 

  • Morgan TP, Grosell MG, Playle RC, Wood CM (2004b) The time course of silver accumulation in rainbow trout during static exposure to silver nitrate: physiological regulation or an artifact of the exposure conditions? Aquat Toxicol 66:55–72

    Article  PubMed  CAS  Google Scholar 

  • Nakada T, Westhoff CM, Kato A, Hirose S (2007) Ammonia secretion from fish gill depends on a set of Rh proteins. FASEB J 21:1067–1074

    Article  PubMed  CAS  Google Scholar 

  • Nawata CM, Hung CCY, Tsui TKN, Wilson JM, Wright PA, Wood CM (2007) Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and H+-ATPase involvement. Physiol Genomics 31:463–474

    Article  PubMed  CAS  Google Scholar 

  • Nawata CM, Wood CM, O’Donnell MJ (2010) Functional characterization of Rhesus glycoproteins from an ammoniotelic teleost, the rainbow trout, using oocyte expression and SIET analysis. J Exp Biol 213:1049–1059

    Article  PubMed  CAS  Google Scholar 

  • Parks SK, Tresguerres M, Goss GG (2008) Theoretical considerations underlying Na+ uptake mechanisms in freshwater fishes. Comp Biochem Physiol C148:411–418

    Google Scholar 

  • Patrick ML, Wood CM (1999) Ion and acid–base regulation in the freshwater mummichog (Fundulus heteroclitus): a departure from the standard model for freshwater teleosts. Comp Biochem Physiol A122:445–456

    Article  Google Scholar 

  • Preest MR, Gonzalez RJ, Wilson RW (2005) A pharmacological examination of Na+ and Cl transport in two species of freshwater fish. Physiol Biochem Zool 78:259–272

    Article  PubMed  CAS  Google Scholar 

  • Rahmatullah M, Boyde TR (1980) Improvements in the determination of urea using diacetyl monoxime: methods with and without deproteinization. Clin Chem Acta 107:3–9

    Article  CAS  Google Scholar 

  • Randall DJ, Brauner C, Wilson J (1996) Acid excretion in Amazonian fish. In: Val AL, Almeida-Val VMF, Randall DJ (eds) Physiology and biochemistry of the fishes of the Amazon. INPA, Manaus, pp 91–100

    Google Scholar 

  • Salama A, Morgan IJ, Wood CM (1999) The linkage between sodium uptake and ammonia excretion in rainbow trout—kinetic analysis, the effects of (NH4)2 SO4 and NH4 HCO3 infusion, and the influence of gill boundary layer pH. J Exp Biol 202:697–709

    PubMed  CAS  Google Scholar 

  • Shih T-H, Horng J-L, Liu ST, Hwang P-P, Lin Y-H (2012) Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. Am J Physiol 302:R84–R93

    CAS  Google Scholar 

  • Sinha AK, Liew HJ, Nawata CM, Blust R, Wood CM, De Boeck G (2013) Modulation of Rh glycoproteins, ammonia excretion and Na+ fluxes in three freshwater teleosts when exposed chronically to high environmental ammonia. J Exp Biol 216:2917–2930

    Article  PubMed  CAS  Google Scholar 

  • Stokes JB, Lee I, D’Amico M (1984) Sodium chloride absorption by the urinary bladder of the winter flounder. J Clin Invest 74:7–16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Twitchen ID, Eddy FB (1994) Effects of ammonia on sodium balance in juvenile rainbow trout Oncorhynchus mykiss Walbaum. Aquat Toxicol 30:27–45

    Article  CAS  Google Scholar 

  • Val AL, Almeida-Val VMF (1995) Fishes of the Amazon and their environment. Physiological and biochemical features. Springer, Heidelberg

    Book  Google Scholar 

  • Verdouw H, van Echted CJA, Dekkers EMJ (1978) Ammonia determination based on indophenol formation with sodium salicylate. Water Res 12:399–402

    Article  CAS  Google Scholar 

  • Wang YF, Tseng YC, Yan JJ, Hiroi J, Hwang PP (2009) Role of SLC12A10. 2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am J Physiol 296:R1650–R1660

    CAS  Google Scholar 

  • Wilkie MP (2002) Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. J Exp Zool 293:284–301

    Article  PubMed  CAS  Google Scholar 

  • Wilson RW (1996) Ammonia excretion in fish adapted to an ion-poor environment. In: Val AL, Almeida-Val VMF, Randall DJ (eds) Physiology and biochemistry of the fishes of the Amazon. INPA, Manaus, pp 123–138

    Google Scholar 

  • Wilson RW, Wright P, Munger RS, Wood CM (1994) Ammonia excretion in freshwater rainbow trout (Oncorhynchus mykiss) and the importance of gill boundary layer acidification: lack of evidence for Na+/NH4 + exchange. J Exp Biol 191:37–58

    PubMed  CAS  Google Scholar 

  • Wilson RW, Wood CM, Gonzalez RJ, Patrick M, Bergman HL, Narahara A, Val AL (1999) Net ion fluxes during gradual acidification of extremely softwater in three species of Amazonian fish. Physiol Biochem Zool 72:277–285

    Article  PubMed  CAS  Google Scholar 

  • Wood CM (1992) Flux measurements as indices of H+ and metal effects on freshwater fish. Aquat Toxicol 22:239–264

    Article  CAS  Google Scholar 

  • Wood CM, Hogstrand C, Galvez F, Munger RS (1996) The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+. Aquat Toxicol 35:93–109

    Article  CAS  Google Scholar 

  • Wood CM, Matsuo AYO, Gonzalez RJ, Wilson RW, Patrick ML, Val AL (2002) Mechanisms of ion transport in Potamotrygon, a stenohaline freshwater elasmobranch native to the ion-poor blackwaters of the Rio Negro. J Exp Biol 205:3039–3054

    PubMed  CAS  Google Scholar 

  • Wood CM, Matsuo AYO, Wilson RW, Gonzalez RJ, Patrick ML, Playle RC, Val AL (2003) Protection by blackwater against disturbances in ion fluxes caused by low pH exposure in freshwater stingrays endemic to the Rio Negro. Physiol Biochem Zool 76:12–27

    Article  PubMed  Google Scholar 

  • Wood CM, Kajimura M, Sloman KA, Scott GR, Walsh PJ, Almeida-Val VMF, Val AL (2007) Rapid regulation of Na+ fluxes and ammonia excretion in response to acute environmental hypoxia in the Amazonian oscar, Astronotus ocellatus. Am J Physiol 292:R2048–R2058

    CAS  Google Scholar 

  • Wood CM, Al-Reasi HA, Smith S (2011) The two faces of DOC. Aquat Toxicol 105S:3–8

    Article  Google Scholar 

  • Wood CM, Nawata CM, Wilson JM, Laurent P, Chevalier C, Bergman HL, Bianchini A, Maina JN, Johannsson OE, Bianchini LF, Kavembe GD, Papah MB, Ojoo RO (2013) Rh proteins and NH4 +-activated Na+ATPase in the Magadi tilapia (Alcolapia grahami), a 100% ureotelic teleost fish. J Exp Biol 216:2998–3007

    Article  PubMed  CAS  Google Scholar 

  • Wright PA, Wood CM (1985) An analysis of branchial ammonia excretion in the freshwater rainbow trout: effects of environmental pH change and sodium uptake blockade. J Exp Biol 114:329–353

    CAS  Google Scholar 

  • Wright PA, Wood CM (2009) A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins. J Exp Biol 212:2303–2312

    Article  PubMed  CAS  Google Scholar 

  • Wright PA, Wood CM (2012) Seven things fish know about ammonia and we don’t. Respir Physiol Neurobiol 184:231–240

    Article  PubMed  CAS  Google Scholar 

  • Zall DM, Fisher D, Garner MQ (1956) Photometric determination of chloride in water. Anal Chem 28:1665–1668

    Article  CAS  Google Scholar 

  • Zimmer A, Nawata CM, Wood CM (2010) Physiological and molecular analysis of the interactive effects of feeding and high environmental ammonia on branchial ammonia excretion and Na+ uptake in freshwater rainbow trout. J Comp Physiol 180:1191–1204

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by FAPEAM and CNPq through the INCT-ADAPTA grant to ALV, and Ciência sem Fronteiras grant to ALV and CMW. LMR was supported by an Ontario Graduate Scholarship. CMW is supported by the Canada Research Chairs program and is the recipient of a fellowship from the Science Without Borders Program (CNPq-Brazil). ALV is a recipient of a research fellowship from CNPq. Special thanks to Maria de Nazaré Paula da Silva, Jose Gadelha de Souza Netto, Dr. Rafael M. Duarte, and Dr. Tania Ng for assistance, and to Drs. Aaron Schultz and Greg Goss for helpful input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris M. Wood.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, C.M., Robertson, L.M., Johannsson, O.E. et al. Mechanisms of Na+ uptake, ammonia excretion, and their potential linkage in native Rio Negro tetras (Paracheirodon axelrodi, Hemigrammus rhodostomus, and Moenkhausia diktyota). J Comp Physiol B 184, 877–890 (2014). https://doi.org/10.1007/s00360-014-0847-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0847-7

Keywords

Navigation